EpicPred: predicting phenotypes driven by epitope-binding TCRs using attention-based multiple instance learning

Motivation Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association to some phenotype and accordingly develop T-cell mediated immunotherapy treatments. Although the importance of the CDR3 region in TCRs for epi...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) Vol. 41; no. 3
Main Authors: Jeon, Jaemin, Yu, Suwan, Lee, Sangam, Kim, Sang Cheol, Jo, Hye-Yeong, Jung, Inuk, Kim, Kwangsoo
Format: Journal Article
Language:English
Published: England Oxford University Press 04.03.2025
Subjects:
ISSN:1367-4811, 1367-4803, 1367-4811
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Motivation Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association to some phenotype and accordingly develop T-cell mediated immunotherapy treatments. Although the importance of the CDR3 region in TCRs for epitope recognition is well recognized, methods for profiling their interactions in association to a certain disease or phenotype remains less studied. We developed EpicPred to identify phenotype-specific TCR–epitope interactions. EpicPred first predicts and removes unlikely TCR–epitope interactions to reduce false positives using the Open-set Recognition (OSR). Subsequently, multiple instance learning was used to identify TCR–epitope interactions specific to a cancer type or severity levels of COVID-19 infected patients. Results From six public TCR databases, 244 552 TCR sequences and 105 unique epitopes were used to predict epitope-binding TCRs and to filter out non-epitope-binding TCRs using the OSR method. The predicted interactions were used to further predict the phenotype groups in two cancer and four COVID-19 TCR-seq datasets of both bulk and single-cell resolution. EpicPred outperformed the competing methods in predicting the phenotypes, achieving an average AUROC of 0.80 ± 0.07. Availability and implementation The EpicPred Software is available at https://github.com/jaeminjj/EpicPred.
AbstractList Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association to some phenotype and accordingly develop T-cell mediated immunotherapy treatments. Although the importance of the CDR3 region in TCRs for epitope recognition is well recognized, methods for profiling their interactions in association to a certain disease or phenotype remains less studied. We developed EpicPred to identify phenotype-specific TCR-epitope interactions. EpicPred first predicts and removes unlikely TCR-epitope interactions to reduce false positives using the Open-set Recognition (OSR). Subsequently, multiple instance learning was used to identify TCR-epitope interactions specific to a cancer type or severity levels of COVID-19 infected patients.MOTIVATIONCorrectly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association to some phenotype and accordingly develop T-cell mediated immunotherapy treatments. Although the importance of the CDR3 region in TCRs for epitope recognition is well recognized, methods for profiling their interactions in association to a certain disease or phenotype remains less studied. We developed EpicPred to identify phenotype-specific TCR-epitope interactions. EpicPred first predicts and removes unlikely TCR-epitope interactions to reduce false positives using the Open-set Recognition (OSR). Subsequently, multiple instance learning was used to identify TCR-epitope interactions specific to a cancer type or severity levels of COVID-19 infected patients.From six public TCR databases, 244 552 TCR sequences and 105 unique epitopes were used to predict epitope-binding TCRs and to filter out non-epitope-binding TCRs using the OSR method. The predicted interactions were used to further predict the phenotype groups in two cancer and four COVID-19 TCR-seq datasets of both bulk and single-cell resolution. EpicPred outperformed the competing methods in predicting the phenotypes, achieving an average AUROC of 0.80 ± 0.07.RESULTSFrom six public TCR databases, 244 552 TCR sequences and 105 unique epitopes were used to predict epitope-binding TCRs and to filter out non-epitope-binding TCRs using the OSR method. The predicted interactions were used to further predict the phenotype groups in two cancer and four COVID-19 TCR-seq datasets of both bulk and single-cell resolution. EpicPred outperformed the competing methods in predicting the phenotypes, achieving an average AUROC of 0.80 ± 0.07.The EpicPred Software is available at https://github.com/jaeminjj/EpicPred.AVAILABILITY AND IMPLEMENTATIONThe EpicPred Software is available at https://github.com/jaeminjj/EpicPred.
Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association to some phenotype and accordingly develop T-cell mediated immunotherapy treatments. Although the importance of the CDR3 region in TCRs for epitope recognition is well recognized, methods for profiling their interactions in association to a certain disease or phenotype remains less studied. We developed EpicPred to identify phenotype-specific TCR-epitope interactions. EpicPred first predicts and removes unlikely TCR-epitope interactions to reduce false positives using the Open-set Recognition (OSR). Subsequently, multiple instance learning was used to identify TCR-epitope interactions specific to a cancer type or severity levels of COVID-19 infected patients. From six public TCR databases, 244 552 TCR sequences and 105 unique epitopes were used to predict epitope-binding TCRs and to filter out non-epitope-binding TCRs using the OSR method. The predicted interactions were used to further predict the phenotype groups in two cancer and four COVID-19 TCR-seq datasets of both bulk and single-cell resolution. EpicPred outperformed the competing methods in predicting the phenotypes, achieving an average AUROC of 0.80 ± 0.07. The EpicPred Software is available at https://github.com/jaeminjj/EpicPred.
Motivation Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association to some phenotype and accordingly develop T-cell mediated immunotherapy treatments. Although the importance of the CDR3 region in TCRs for epitope recognition is well recognized, methods for profiling their interactions in association to a certain disease or phenotype remains less studied. We developed EpicPred to identify phenotype-specific TCR–epitope interactions. EpicPred first predicts and removes unlikely TCR–epitope interactions to reduce false positives using the Open-set Recognition (OSR). Subsequently, multiple instance learning was used to identify TCR–epitope interactions specific to a cancer type or severity levels of COVID-19 infected patients. Results From six public TCR databases, 244 552 TCR sequences and 105 unique epitopes were used to predict epitope-binding TCRs and to filter out non-epitope-binding TCRs using the OSR method. The predicted interactions were used to further predict the phenotype groups in two cancer and four COVID-19 TCR-seq datasets of both bulk and single-cell resolution. EpicPred outperformed the competing methods in predicting the phenotypes, achieving an average AUROC of 0.80 ± 0.07. Availability and implementation The EpicPred Software is available at https://github.com/jaeminjj/EpicPred.
Author Kim, Sang Cheol
Lee, Sangam
Kim, Kwangsoo
Yu, Suwan
Jo, Hye-Yeong
Jung, Inuk
Jeon, Jaemin
Author_xml – sequence: 1
  givenname: Jaemin
  surname: Jeon
  fullname: Jeon, Jaemin
– sequence: 2
  givenname: Suwan
  surname: Yu
  fullname: Yu, Suwan
– sequence: 3
  givenname: Sangam
  orcidid: 0009-0000-2479-7606
  surname: Lee
  fullname: Lee, Sangam
– sequence: 4
  givenname: Sang Cheol
  surname: Kim
  fullname: Kim, Sang Cheol
  email: kwangsookim@snu.ac.kr
– sequence: 5
  givenname: Hye-Yeong
  surname: Jo
  fullname: Jo, Hye-Yeong
– sequence: 6
  givenname: Inuk
  orcidid: 0000-0003-0675-4244
  surname: Jung
  fullname: Jung, Inuk
  email: inukjung@knu.ac.kr
– sequence: 7
  givenname: Kwangsoo
  orcidid: 0000-0002-4586-5062
  surname: Kim
  fullname: Kim, Kwangsoo
  email: kwangsookim@snu.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39982404$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1r3DAQhkVJaT7avxB87MWNtJJlqZdSlvQDAi0lPYuRPE5UbEmV5MD--3jZbUhuvUgD87zvDPOek5MQAxJyyegHRjW_sj76MMY8Q_WuXNkKI1X0FTljXPatUIydPKtPyXkpfyilHe3kG3LKtVYbQcUZidfJu58Zh49NWl_vqg93TbrHEOsuYWmG7B8wNHbXYPI1JmytD8Meut3-Ks1S9iXUiqH6GFoLBYdmXqbq04SND6VCcNhMCDms6FvyeoSp4Lvjf0F-f7m-3X5rb358_b79fNM6zjRtmQMlwAqUvbQ9WEeZ5EIJu3FSja7XXS9QbzQbHHR2ALHplVaguBTABbf8gnw6-KbFzji4db0Mk0nZz5B3JoI3LzvB35u7-GAYU72WHV0d3h8dcvy7YKlm9sXhNEHAuBTDmdRMMS7Eil4-H_Y05d-ZV0AeAJdjKRnHJ4RRs8_TvMzTHPNchewgjEv6X80jOemtuw
Cites_doi 10.1038/s41467-021-21879-w
10.1038/nri2057
10.1093/bioinformatics/btz921
10.1016/j.cell.2020.10.037
10.1016/j.imavis.2023.104862
10.3389/fgene.2022.860510
10.1073/pnas.1504276112
10.1093/bioinformatics/btx286
10.1186/s12859-022-05012-2
10.1093/bioinformatics/btad743
10.1093/nar/gkx760
10.1126/science.ade2574
10.1515/jpm-2020-0280
10.3389/fimmu.2023.1190844
10.1126/scitranslmed.abd3595
10.1038/s41467-024-47461-8
10.1084/jem.20200652
10.3389/fimmu.2020.565096
10.1073/pnas.2024202118
10.1038/s41591-021-01329-2
10.1016/j.immuni.2020.05.002
10.1126/scitranslmed.aaz3738
10.1093/nar/gkaa796
10.1038/s42003-023-04447-4
10.1093/nar/gky1006
10.1890/13-0133.1
10.1093/bioinformatics/btz614
10.1007/978-3-031-04025-2_6
10.1371/journal.pcbi.1008814
10.1093/nar/gky964
10.1109/TPAMI.2021.3095381
10.5483/BMBRep.2022.55.9.077
10.1093/bioinformatics/btac788
10.1016/j.virusres.2021.198464
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press. 2025
The Author(s) 2025. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press. 2025
– notice: The Author(s) 2025. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btaf080
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
ExternalDocumentID PMC11879650
39982404
10_1093_bioinformatics_btaf080
10.1093/bioinformatics/btaf080
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
– fundername: Korea National Institute of Health
  grantid: 2024-ER-0801-01
– fundername: Korea government
  grantid: RS-2024-00414964
– fundername: ;
– fundername: ;
  grantid: 2024-ER-0801-01
– fundername: ;
  grantid: RS-2024-00414964
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
ROX
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c3190-1ca84ab4e676b7abc0163484b2c68fc79574e9291dca5bda427898a8364a343b3
IEDL.DBID TOX
ISSN 1367-4811
1367-4803
IngestDate Thu Aug 21 18:27:13 EDT 2025
Fri Jul 11 11:01:26 EDT 2025
Mon Jul 21 05:19:00 EDT 2025
Sat Nov 29 08:17:13 EST 2025
Mon Jun 30 08:34:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2025. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3190-1ca84ab4e676b7abc0163484b2c68fc79574e9291dca5bda427898a8364a343b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4586-5062
0009-0000-2479-7606
0000-0003-0675-4244
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btaf080
PMID 39982404
PQID 3169181344
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11879650
proquest_miscellaneous_3169181344
pubmed_primary_39982404
crossref_primary_10_1093_bioinformatics_btaf080
oup_primary_10_1093_bioinformatics_btaf080
PublicationCentury 2000
PublicationDate 2025-Mar-04
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-Mar-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Chao (2025030711570340700_btaf080-B5) 2014; 84
Vabret (2025030711570340700_btaf080-B31) 2020; 52
Jokinen (2025030711570340700_btaf080-B12) 2021; 17
Korpela (2025030711570340700_btaf080-B14) 2023; 39
Park (2025030711570340700_btaf080-B21) 2023; 6
Zhou (2025030711570340700_btaf080-B39)
Beshnova (2025030711570340700_btaf080-B3) 2020; 12
Sidhom (2025030711570340700_btaf080-B26) 2021; 12
Makatsariya (2025030711570340700_btaf080-B19) 2020; 48
Ilse (2025030711570340700_btaf080-B9) 2018
Xu (2025030711570340700_btaf080-B36) 2022; 13
Jo (2025030711570340700_btaf080-B10) 2022; 55
Chen (2025030711570340700_btaf080-B6) 2021; 49
Tickotsky (2025030711570340700_btaf080-B30) 2017; 33
Barnes (2025030711570340700_btaf080-B2) 2020; 217
Vareto (2025030711570340700_btaf080-B32) 2024; 141
Ravishankar (2025030711570340700_btaf080-B24) 2015; 112
Shugay (2025030711570340700_btaf080-B25) 2018; 46
Policard (2025030711570340700_btaf080-B23) 2021; 301
Wu (2025030711570340700_btaf080-B34)
Liu (2025030711570340700_btaf080-B18)
Stephenson (2025030711570340700_btaf080-B27) 2021; 27
Jokinen (2025030711570340700_btaf080-B11) 2023; 39
Kim (2025030711570340700_btaf080-B13) 2022; 23
Zhang (2025030711570340700_btaf080-B37) 2020; 36
Lin (2025030711570340700_btaf080-B17) 2023; 379
Athar (2025030711570340700_btaf080-B1) 2019; 47
Carlberg (2025030711570340700_btaf080-B4) 2022
Lan (2025030711570340700_btaf080-B15) 2020
Paul (2025030711570340700_btaf080-B22) 2021; 13
Zhang (2025030711570340700_btaf080-B38) 2021; 118
Lee (2025030711570340700_btaf080-B16) 2020; 11
Elnaggar (2025030711570340700_btaf080-B8) 2021; 44
Su (2025030711570340700_btaf080-B28) 2020; 183
Vita (2025030711570340700_btaf080-B33) 2019; 47
Tareen (2025030711570340700_btaf080-B29) 2020; 36
Xu (2025030711570340700_btaf080-B35) 2023; 14
Newman (2025030711570340700_btaf080-B20) 2007; 7
Croce (2025030711570340700_btaf080-B7) 2024; 15
References_xml – volume: 12
  start-page: 1605
  year: 2021
  ident: 2025030711570340700_btaf080-B26
  article-title: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21879-w
– volume: 7
  start-page: 279
  year: 2007
  ident: 2025030711570340700_btaf080-B20
  article-title: Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2057
– volume: 36
  start-page: 2272
  year: 2020
  ident: 2025030711570340700_btaf080-B29
  article-title: Logomaker: beautiful sequence logos in python
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz921
– volume: 183
  start-page: 1479
  year: 2020
  ident: 2025030711570340700_btaf080-B28
  article-title: Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.037
– volume: 141
  start-page: 104862
  year: 2024
  ident: 2025030711570340700_btaf080-B32
  article-title: Open-set face recognition with maximal entropy and objectosphere loss
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2023.104862
– volume: 13
  start-page: 860510
  year: 2022
  ident: 2025030711570340700_btaf080-B36
  article-title: DeepLION: deep multi-instance learning improves the prediction of cancer-associated T cell receptors for accurate cancer detection
  publication-title: Front Genet
  doi: 10.3389/fgene.2022.860510
– volume: 112
  start-page: 10774
  year: 2015
  ident: 2025030711570340700_btaf080-B24
  article-title: The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1504276112
– volume: 33
  start-page: 2924
  year: 2017
  ident: 2025030711570340700_btaf080-B30
  article-title: McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx286
– volume: 23
  start-page: 469
  year: 2022
  ident: 2025030711570340700_btaf080-B13
  article-title: Multiple instance neural networks based on sparse attention for cancer detection using T-cell receptor sequences
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-022-05012-2
– volume: 39
  start-page: btad743
  year: 2023
  ident: 2025030711570340700_btaf080-B14
  article-title: EPIC-TRACE: predicting TCR binding to unseen epitopes using attention and contextualized embeddings
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad743
– volume: 46
  start-page: D419
  year: 2018
  ident: 2025030711570340700_btaf080-B25
  article-title: VDJdb: a curated database of T-cell receptor sequences with known antigen specificity
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx760
– volume: 379
  start-page: 1123
  year: 2023
  ident: 2025030711570340700_btaf080-B17
  article-title: Evolutionary-scale prediction of atomic-level protein structure with a language model
  publication-title: Science
  doi: 10.1126/science.ade2574
– volume: 48
  start-page: 985
  year: 2020
  ident: 2025030711570340700_btaf080-B19
  article-title: COVID-19, neutrophil extracellular traps and vascular complications in obstetric practice
  publication-title: J Perinat Med
  doi: 10.1515/jpm-2020-0280
– start-page: 507
  ident: 2025030711570340700_btaf080-B18
– volume: 14
  start-page: 1190844
  year: 2023
  ident: 2025030711570340700_btaf080-B35
  article-title: T cell receptor β repertoires in patients with COVID-19 reveal disease severity signatures
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2023.1190844
– volume: 13
  start-page: eabd3595
  year: 2021
  ident: 2025030711570340700_btaf080-B22
  article-title: TCR β chain-directed bispecific antibodies for the treatment of T cell cancers
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.abd3595
– volume: 15
  start-page: 3211
  year: 2024
  ident: 2025030711570340700_btaf080-B7
  article-title: Deep learning predictions of TCR-epitope interactions reveal epitope-specific chains in dual alpha T cells
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-47461-8
– volume: 217
  year: 2020
  ident: 2025030711570340700_btaf080-B2
  article-title: Targeting potential drivers of COVID-19: neutrophil extracellular traps
  publication-title: J Exp Med
  doi: 10.1084/jem.20200652
– volume: 11
  start-page: 565096
  year: 2020
  ident: 2025030711570340700_btaf080-B16
  article-title: Predicting cross-reactivity and antigen specificity of T cell receptors
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.565096
– volume: 118
  start-page: e2024202118
  year: 2021
  ident: 2025030711570340700_btaf080-B38
  article-title: The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-I
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2024202118
– start-page: 2127
  year: 2018
  ident: 2025030711570340700_btaf080-B9
– start-page: 194
  ident: 2025030711570340700_btaf080-B34
– volume: 27
  start-page: 904
  year: 2021
  ident: 2025030711570340700_btaf080-B27
  article-title: Single-cell multi-omics analysis of the immune response in COVID-19
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01329-2
– volume: 52
  start-page: 910
  year: 2020
  ident: 2025030711570340700_btaf080-B31
  article-title: Immunology of COVID-19: current state of the science
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.05.002
– volume: 12
  start-page: eaaz3738
  year: 2020
  ident: 2025030711570340700_btaf080-B3
  article-title: De novo prediction of cancer-associated t cell receptors for noninvasive cancer detection
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaz3738
– volume: 49
  start-page: D468
  year: 2021
  ident: 2025030711570340700_btaf080-B6
  article-title: TCRdb: a comprehensive database for T-cell receptor sequences with powerful search function
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa796
– volume: 6
  start-page: 76
  year: 2023
  ident: 2025030711570340700_btaf080-B21
  article-title: Machine learning identifies T cell receptor repertoire signatures associated with COVID-19 severity
  publication-title: Commun Biol
  doi: 10.1038/s42003-023-04447-4
– volume: 47
  start-page: D339
  year: 2019
  ident: 2025030711570340700_btaf080-B33
  article-title: The immune epitope database (IEDB): 2018 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1006
– volume: 84
  start-page: 45
  year: 2014
  ident: 2025030711570340700_btaf080-B5
  article-title: Rarefaction and extrapolation with hill numbers: a framework for sampling and estimation in species diversity studies
  publication-title: Ecol Monogr
  doi: 10.1890/13-0133.1
– start-page: 3036
  year: 2020
  ident: 2025030711570340700_btaf080-B15
– volume: 36
  start-page: 897
  year: 2020
  ident: 2025030711570340700_btaf080-B37
  article-title: PIRD: pan immune repertoire database
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz614
– start-page: 89
  volume-title: Molecular Immunology: How Science Works
  year: 2022
  ident: 2025030711570340700_btaf080-B4
  doi: 10.1007/978-3-031-04025-2_6
– volume: 17
  start-page: e1008814
  year: 2021
  ident: 2025030711570340700_btaf080-B12
  article-title: Predicting recognition between T cell receptors and epitopes with TCRGP
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008814
– ident: 2025030711570340700_btaf080-B39
– volume: 47
  start-page: D711
  year: 2019
  ident: 2025030711570340700_btaf080-B1
  article-title: Arrayexpress update—from bulk to single-cell expression data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky964
– volume: 44
  start-page: 7112
  year: 2021
  ident: 2025030711570340700_btaf080-B8
  article-title: ProtTrans: toward understanding the language of life through self-supervised learning
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2021.3095381
– volume: 55
  start-page: 465
  year: 2022
  ident: 2025030711570340700_btaf080-B10
  article-title: Establishment of the large-scale longitudinal multi-omics dataset in COVID-19 patients: data profile and biospecimen
  publication-title: BMB Rep
  doi: 10.5483/BMBRep.2022.55.9.077
– volume: 39
  start-page: btac788
  year: 2023
  ident: 2025030711570340700_btaf080-B11
  article-title: TCRconv: predicting recognition between T cell receptors and epitopes using contextualized motifs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac788
– volume: 301
  start-page: 198464
  year: 2021
  ident: 2025030711570340700_btaf080-B23
  article-title: Immune characterization and profiles of SARS-CoV-2 infected patients reveals potential host therapeutic targets and SARS-CoV-2 oncogenesis mechanism
  publication-title: Virus Res
  doi: 10.1016/j.virusres.2021.198464
SSID ssj0005056
Score 2.4747157
Snippet Motivation Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association...
Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association to some...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Computational Biology - methods
COVID-19 - immunology
COVID-19 - virology
Epitopes - immunology
Epitopes, T-Lymphocyte - immunology
Epitopes, T-Lymphocyte - metabolism
Humans
Machine Learning
Multiple-Instance Learning Algorithms
Neoplasms - immunology
Original Paper
Phenotype
Receptors, Antigen, T-Cell - chemistry
Receptors, Antigen, T-Cell - genetics
Receptors, Antigen, T-Cell - immunology
Receptors, Antigen, T-Cell - metabolism
SARS-CoV-2 - immunology
Software
Title EpicPred: predicting phenotypes driven by epitope-binding TCRs using attention-based multiple instance learning
URI https://www.ncbi.nlm.nih.gov/pubmed/39982404
https://www.proquest.com/docview/3169181344
https://pubmed.ncbi.nlm.nih.gov/PMC11879650
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-QwEB5UFHy5O3-veksEn4SydpM26b2JKPcgKrLKvpUknWpf2tLdPfC_N9MfagVB7zlpCZkk8yXzzTcAx751R6NyG5BbGXoOEUvPpOPAQ3cVUBwji7WU0sOVvL5W02l0uwR-lwvzMYQf8ZHJilZElISLR2auUwdz3KnrB4pqFkxupm-kDufPuzzgTz_tuaBeWts7dPmRJPnO61z-_I_x_oIfLcRkZ82a2IAlzDdhrSk6-bwFxUWZ2dsKkz-srChMQ8RnRlSvgt5jZyyp6ARk5plh6fZ7iXR7JhfHJud3M0ZM-UdGspw1UdIjP5iwjpjIshpvWmRtPYrHbbi_vJic__Xasgue5ZRY7luthDYCQxkaqY11qJALJczYhiq1MgqkQIeq_MTqwCSainVESiseCs0FN3wHVvIixz1gqBBlcqoMal-YgMTiAyuEFn4aJEGSDmDUWSIuG3WNuImK87g_jXE7jQM4cQb7cuejzq6x2zUUCtE5FotZzEkjSPlciAHsNnZ-_aeDbMrhHNeieivgtQMpcvdb8uypVuaua7c7zLv_nVEewPqYigoTsU0cwsq8WuBvWLX_5tmsGsKynKph_VQwrNf6C40tCGI
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EpicPred%3A+predicting+phenotypes+driven+by+epitope-binding+TCRs+using+attention-based+multiple+instance+learning&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Jeon%2C+Jaemin&rft.au=Yu%2C+Suwan&rft.au=Lee%2C+Sangam&rft.au=Kim%2C+Sang+Cheol&rft.date=2025-03-04&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=41&rft.issue=3&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaf080&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4811&client=summon