Parallel PCA–KPCA for nonlinear process monitoring
Both linear and nonlinear relationships may exist among process variables, and monitoring a process with such complex relationships among variables is imperative. However, individual principal component analysis (PCA) or kernel PCA (KPCA) may not be able to characterize these complex relationships w...
Gespeichert in:
| Veröffentlicht in: | Control engineering practice Jg. 80; S. 17 - 25 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.11.2018
|
| Schlagworte: | |
| ISSN: | 0967-0661, 1873-6939 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Both linear and nonlinear relationships may exist among process variables, and monitoring a process with such complex relationships among variables is imperative. However, individual principal component analysis (PCA) or kernel PCA (KPCA) may not be able to characterize these complex relationships well. This paper proposes a parallel PCA–KPCA (P-PCA–KPCA) modeling and monitoring scheme that incorporates randomized algorithm (RA) and genetic algorithm (GA) for efficient fault detection for a process with linearly correlated and nonlinearly related variables First, to determine the included variables in the parallel PCA (P-PCA) and the parallel KPCA (P-KPCA) models, GA-based optimization is performed, in which RA is used to generate faulty validation data. Second, monitoring statistics are established for the P-PCA and the P-KPCA models, in which the process status is determined. The proposed monitoring scheme discriminates the linear and nonlinear relationships among variables in a process and deals with nonlinear processes efficiently. We provide case studies on a numerical example and the continuous stirred tank reactor process. These case studies demonstrate that the proposed P-PCA–KPCA monitoring scheme is better than conventional PCA- or KPCA-based methods at performing nonlinear process monitoring.
•A parallel PCA–KPCA-based nonlinear process monitoring scheme is proposed.•RA and GA are integrated to emplace variables automatically.•Linear and nonlinear variable relationships are well characterized.•Monitoring efficiency and superiority are demonstrated. |
|---|---|
| AbstractList | Both linear and nonlinear relationships may exist among process variables, and monitoring a process with such complex relationships among variables is imperative. However, individual principal component analysis (PCA) or kernel PCA (KPCA) may not be able to characterize these complex relationships well. This paper proposes a parallel PCA–KPCA (P-PCA–KPCA) modeling and monitoring scheme that incorporates randomized algorithm (RA) and genetic algorithm (GA) for efficient fault detection for a process with linearly correlated and nonlinearly related variables First, to determine the included variables in the parallel PCA (P-PCA) and the parallel KPCA (P-KPCA) models, GA-based optimization is performed, in which RA is used to generate faulty validation data. Second, monitoring statistics are established for the P-PCA and the P-KPCA models, in which the process status is determined. The proposed monitoring scheme discriminates the linear and nonlinear relationships among variables in a process and deals with nonlinear processes efficiently. We provide case studies on a numerical example and the continuous stirred tank reactor process. These case studies demonstrate that the proposed P-PCA–KPCA monitoring scheme is better than conventional PCA- or KPCA-based methods at performing nonlinear process monitoring.
•A parallel PCA–KPCA-based nonlinear process monitoring scheme is proposed.•RA and GA are integrated to emplace variables automatically.•Linear and nonlinear variable relationships are well characterized.•Monitoring efficiency and superiority are demonstrated. |
| Author | Yan, Xuefeng Jiang, Qingchao |
| Author_xml | – sequence: 1 givenname: Qingchao surname: Jiang fullname: Jiang, Qingchao – sequence: 2 givenname: Xuefeng surname: Yan fullname: Yan, Xuefeng email: xfyan@ecust.edu.cn |
| BookMark | eNqNj81KAzEURoNUsK2-w7zAjPmZZJKNUIt_WLALXYfbTFIyTJOSDII738E39EmcUkFwo6sPLpxzOTM0CTFYhAqCK4KJuOwqMx7Cdp_AVBQTWeGmwoSeoCmRDSuFYmqCpliJpsRCkDM0y7nDI6oUmaJ6DQn63vbFern4fP94HKdwMRXjm94HC6nYp2hszsUuBj_E5MP2HJ066LO9-N45erm9eV7el6unu4flYlUaRuRQOg41BiXalkmg3FHJJOcgGLW1NE5IxpnbNOBcC462tDYYK6eM5PWGC0fZHMmj16SYc7JO75PfQXrTBOtDve70T70-1Gvc6LF-RK9-ocYPMPgYhgS-_4_g-iiwY-Crt0ln420wtvXJmkG30f8t-QJNTYBP |
| CitedBy_id | crossref_primary_10_3390_pr12020251 crossref_primary_10_3390_su16156443 crossref_primary_10_1016_j_jtice_2023_104687 crossref_primary_10_1002_cjce_25242 crossref_primary_10_1109_TNNLS_2023_3242361 crossref_primary_10_1155_2022_3054860 crossref_primary_10_3390_s25061847 crossref_primary_10_1016_j_chemolab_2025_105423 crossref_primary_10_1109_TASE_2019_2897477 crossref_primary_10_1109_TIM_2024_3413131 crossref_primary_10_1016_j_eswa_2022_117732 crossref_primary_10_1002_cem_3110 crossref_primary_10_1016_j_conengprac_2021_105038 crossref_primary_10_1016_j_conengprac_2020_104344 crossref_primary_10_1002_cjce_23858 crossref_primary_10_1016_j_conengprac_2019_03_015 crossref_primary_10_1002_cjce_23576 crossref_primary_10_1016_j_isatra_2019_05_013 crossref_primary_10_1016_j_compeleceng_2022_108538 crossref_primary_10_1109_ACCESS_2019_2937886 crossref_primary_10_1177_18758967251348540 crossref_primary_10_1177_01423312231195365 crossref_primary_10_1016_j_apor_2021_102681 crossref_primary_10_1088_1361_6501_ac2ca4 crossref_primary_10_1038_s41598_024_68141_z crossref_primary_10_1109_TASE_2019_2956087 crossref_primary_10_1016_j_ces_2021_117236 crossref_primary_10_1016_j_ins_2020_06_062 crossref_primary_10_1109_ACCESS_2019_2906976 crossref_primary_10_1016_j_asoc_2019_105527 crossref_primary_10_1016_j_asoc_2019_105526 crossref_primary_10_1088_1361_6501_addf6c crossref_primary_10_1109_TCST_2019_2936793 crossref_primary_10_1016_j_conengprac_2019_104295 crossref_primary_10_1109_ACCESS_2020_3006282 crossref_primary_10_1109_ACCESS_2021_3083544 crossref_primary_10_1177_0142331220910885 crossref_primary_10_3390_su12010131 crossref_primary_10_1016_j_conengprac_2024_105970 crossref_primary_10_1088_1361_6501_ab7bbd crossref_primary_10_1371_journal_pone_0297996 crossref_primary_10_1109_TII_2024_3353840 crossref_primary_10_1109_TSMC_2019_2896922 crossref_primary_10_1016_j_jfranklin_2022_06_022 crossref_primary_10_1109_ACCESS_2019_2958547 crossref_primary_10_3389_fenrg_2021_696785 crossref_primary_10_1007_s43153_021_00125_2 crossref_primary_10_1109_TII_2022_3209248 crossref_primary_10_1109_TSMC_2022_3224747 crossref_primary_10_1016_j_jprocont_2020_03_007 crossref_primary_10_1002_cjce_23753 crossref_primary_10_1109_TIE_2019_2942560 crossref_primary_10_1002_cjce_24722 crossref_primary_10_1109_TII_2023_3240732 crossref_primary_10_1016_j_jprocont_2023_03_003 crossref_primary_10_1155_2022_3511073 crossref_primary_10_3390_pr8091123 crossref_primary_10_1002_cjce_24066 crossref_primary_10_3390_s19061440 crossref_primary_10_1016_j_apenergy_2022_119678 crossref_primary_10_1016_j_conengprac_2023_105660 crossref_primary_10_1109_TIM_2023_3334335 crossref_primary_10_1109_ACCESS_2019_2894764 crossref_primary_10_1016_j_conengprac_2020_104628 crossref_primary_10_1016_j_rcim_2023_102694 crossref_primary_10_1109_JSEN_2022_3144827 crossref_primary_10_1016_j_ins_2019_11_039 crossref_primary_10_1016_j_jtice_2019_10_021 crossref_primary_10_1080_21642583_2020_1768173 crossref_primary_10_1109_ACCESS_2020_3000004 crossref_primary_10_1109_TIM_2023_3289545 crossref_primary_10_1016_j_conengprac_2021_104778 crossref_primary_10_1109_ACCESS_2019_2962008 crossref_primary_10_1155_2020_8864594 crossref_primary_10_1016_j_jfranklin_2020_01_049 crossref_primary_10_1016_j_measurement_2019_03_013 crossref_primary_10_1016_j_ifacol_2020_12_699 crossref_primary_10_1016_j_measurement_2020_108200 crossref_primary_10_1088_1361_6501_ad1a87 crossref_primary_10_1109_ACCESS_2019_2907328 crossref_primary_10_1016_j_engappai_2021_104381 crossref_primary_10_1016_j_ress_2025_111347 crossref_primary_10_1016_j_asoc_2022_108898 crossref_primary_10_1016_j_isatra_2020_07_037 crossref_primary_10_1109_ACCESS_2019_2909986 crossref_primary_10_1002_cjce_23762 crossref_primary_10_1109_ACCESS_2019_2920395 crossref_primary_10_1177_1550147719857583 crossref_primary_10_1016_j_chemolab_2023_104931 crossref_primary_10_1109_TNNLS_2021_3086323 crossref_primary_10_1002_apj_3132 crossref_primary_10_1016_j_conengprac_2023_105750 crossref_primary_10_1016_j_ifacol_2020_12_101 crossref_primary_10_1002_cem_3158 crossref_primary_10_1109_TCSII_2023_3330904 crossref_primary_10_3390_pr8010024 crossref_primary_10_1016_j_neunet_2020_11_006 crossref_primary_10_1109_TIM_2022_3222506 crossref_primary_10_1109_TCYB_2022_3228524 crossref_primary_10_1109_TCST_2018_2870570 crossref_primary_10_1109_TNNLS_2020_2985223 crossref_primary_10_1016_j_conengprac_2022_105182 crossref_primary_10_1002_cjce_23670 crossref_primary_10_1016_j_cjche_2024_02_005 crossref_primary_10_1109_TASE_2023_3332452 crossref_primary_10_1080_17517575_2021_1995784 crossref_primary_10_1109_TII_2020_3029900 crossref_primary_10_1016_j_chemolab_2022_104528 crossref_primary_10_1109_TIM_2024_3476588 crossref_primary_10_1016_j_conengprac_2022_105109 crossref_primary_10_3390_pr10050925 crossref_primary_10_1007_s13369_021_05388_y crossref_primary_10_1007_s10489_021_03007_9 crossref_primary_10_1002_cjce_25689 crossref_primary_10_1002_cjce_25688 crossref_primary_10_1002_cem_3142 crossref_primary_10_1016_j_compchemeng_2024_108707 crossref_primary_10_1080_21642583_2021_1967220 crossref_primary_10_1109_ACCESS_2020_3034550 crossref_primary_10_1016_j_ifacol_2022_07_533 crossref_primary_10_1007_s13762_020_02799_6 crossref_primary_10_1016_j_conengprac_2019_07_017 crossref_primary_10_1016_j_flowmeasinst_2021_101904 crossref_primary_10_1016_j_ress_2024_110421 crossref_primary_10_1016_j_cie_2021_107447 crossref_primary_10_1109_ACCESS_2019_2892496 crossref_primary_10_1016_j_matpr_2021_11_327 crossref_primary_10_1016_j_conengprac_2020_104558 crossref_primary_10_1016_j_conengprac_2023_105613 crossref_primary_10_1016_j_conengprac_2021_104955 crossref_primary_10_1016_j_jtice_2020_06_001 crossref_primary_10_1002_cem_3134 crossref_primary_10_1016_j_pnucene_2022_104516 crossref_primary_10_1016_j_conengprac_2019_04_008 crossref_primary_10_1016_j_jfranklin_2023_03_041 crossref_primary_10_1002_aic_17402 crossref_primary_10_1016_j_conengprac_2019_104235 crossref_primary_10_1109_ACCESS_2018_2890301 crossref_primary_10_1007_s10614_024_10813_z crossref_primary_10_1016_j_chemolab_2019_103812 crossref_primary_10_1016_j_jclepro_2024_143680 crossref_primary_10_1016_j_psep_2021_11_029 crossref_primary_10_1088_1742_6596_1748_3_032057 crossref_primary_10_1016_j_eswa_2022_117989 crossref_primary_10_1016_j_eswa_2023_121348 crossref_primary_10_1038_s41598_025_10634_6 crossref_primary_10_1109_ACCESS_2018_2886289 crossref_primary_10_1016_j_measurement_2023_113491 crossref_primary_10_1016_j_eswa_2023_120097 crossref_primary_10_1016_j_jprocont_2022_03_010 |
| Cites_doi | 10.1016/j.conengprac.2017.06.003 10.1016/j.jprocont.2016.08.006 10.1016/j.jprocont.2015.04.014 10.1016/0098-1354(95)00003-K 10.1021/ie301945s 10.1016/j.conengprac.2017.07.009 10.14257/ijhit.2016.9.1.17 10.1016/0166-218X(91)90086-C 10.1016/j.conengprac.2015.10.006 10.1016/0169-7439(95)00076-3 10.1016/S0959-1524(00)00022-6 10.1016/j.ces.2003.09.012 10.1016/S0959-1524(00)00008-1 10.1109/TIE.2014.2301761 10.1021/ie900521b 10.1016/j.eswa.2011.02.049 10.1109/TIE.2015.2466557 10.1021/ie3017016 10.1021/ie048873f 10.1002/(SICI)1099-128X(199905/08)13:3/4<379::AID-CEM556>3.0.CO;2-N 10.1016/j.conengprac.2017.07.005 10.1016/j.ifacol.2017.08.711 10.1162/089976698300017467 10.1002/aic.690370209 10.1016/j.chemolab.2014.05.012 10.1080/21642583.2016.1198940 10.1109/TNNLS.2016.2547968 10.1002/aic.690400809 10.1016/j.conengprac.2017.05.005 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.conengprac.2018.07.012 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-6939 |
| EndPage | 25 |
| ExternalDocumentID | 10_1016_j_conengprac_2018_07_012 S0967066118303289 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c318t-f5a40a96dd38a25f283855a632e48cf68353fb7affdaf2d24c009f9c854b56f23 |
| ISICitedReferencesCount | 182 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447483500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0967-0661 |
| IngestDate | Sat Nov 29 07:10:09 EST 2025 Tue Nov 18 21:49:54 EST 2025 Fri Feb 23 02:35:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Nonlinear process monitoring Fault detection Randomized algorithm Genetic algorithm Parallel PCA–KPCA |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c318t-f5a40a96dd38a25f283855a632e48cf68353fb7affdaf2d24c009f9c854b56f23 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1016_j_conengprac_2018_07_012 crossref_citationtrail_10_1016_j_conengprac_2018_07_012 elsevier_sciencedirect_doi_10_1016_j_conengprac_2018_07_012 |
| PublicationCentury | 2000 |
| PublicationDate | November 2018 2018-11-00 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Control engineering practice |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Yue, Valle-Cervantes, Qin (b25) 2000; 10 Zhang, Chai, Wang (b39) 2017; 28 Cheng, Hsu, Chen (b5) 2010; 49 Nomikos, Macgregor (b28) 1994; 40 Lee, Yoo, Sang, Vanrolleghem, Lee (b23) 2004; 59 Samuel, Cao (b30) 2016; 4 Ma, Dong, Peng, Zhang (b27) 2017; 67 Wang, Kruger, Irwin (b33) 2005; 44 Wise, Gallagher, Butler, White, Barna (b35) 2015; 13 Yoon, Macgregor (b37) 2001; 11 Jiang, Yan, Huang (b17) 2016; 63 Ge, Song (b10) 2013; 52 Karp (b19) 1991; 34 Jiang, Ding, Wang, Yan (b12) 2017; PP Rashidi, Singh, Zhao (b29) 2017; 70 Zhao, Gao (b41) 2017; 65 Tempo, Calafiore, Dabbene (b32) 2005 Chen (b2) 2011; 38 Kramer (b20) 1991; 37 Luo, Li, Deng, Zhong, Cai (b26) 2016; 9 Yi, Huang, He, Zhou, Han, Li (b36) 2017; PP Dong, McAvoy (b9) 1996; 20 Bakdi, Kouadri, Bensmail (b1) 2017; 66 Chen, Ding, Peng, Yang, Gui (b4) 2017; PP Krueger, Koenings, Liu, Ding, Saijai, Li (b21) 2017; 50 Li, Qin, Zhou (b24) 2014; 61 Deng, Tian, Chen, Harris (b7) 2016; PP Goldberg (b11) 2006 Ku, Storer, Georgakis (b22) 1995; 30 Jiang, Wang, Yan (b14) 2017 Yuan, Wang, Yang, Ge, Song, Gui (b38) 2017; PP Schölkopf, Smola, Müller (b31) 1998; 10 Chiang, Russell, Braatz (b6) 2001 Jiang, Yan (b15) 2014; 136 Ding (b8) 2014 Chen (b3) 2016; 46 Jiang, Huang (b13) 2016; 46 Zhang, Du, Li (b40) 2017; PP Jiang, Yan, Zhao (b18) 2013; 52 Wang, Zhao (b34) 2017; 68 Jiang, Yan (b16) 2015; 32 Karp (10.1016/j.conengprac.2018.07.012_b19) 1991; 34 Ma (10.1016/j.conengprac.2018.07.012_b27) 2017; 67 Zhang (10.1016/j.conengprac.2018.07.012_b40) 2017; PP Wise (10.1016/j.conengprac.2018.07.012_b35) 2015; 13 Samuel (10.1016/j.conengprac.2018.07.012_b30) 2016; 4 Jiang (10.1016/j.conengprac.2018.07.012_b15) 2014; 136 Zhao (10.1016/j.conengprac.2018.07.012_b41) 2017; 65 Jiang (10.1016/j.conengprac.2018.07.012_b18) 2013; 52 Ge (10.1016/j.conengprac.2018.07.012_b10) 2013; 52 Rashidi (10.1016/j.conengprac.2018.07.012_b29) 2017; 70 Deng (10.1016/j.conengprac.2018.07.012_b7) 2016; PP Lee (10.1016/j.conengprac.2018.07.012_b23) 2004; 59 Nomikos (10.1016/j.conengprac.2018.07.012_b28) 1994; 40 Schölkopf (10.1016/j.conengprac.2018.07.012_b31) 1998; 10 Yoon (10.1016/j.conengprac.2018.07.012_b37) 2001; 11 Jiang (10.1016/j.conengprac.2018.07.012_b14) 2017 Ding (10.1016/j.conengprac.2018.07.012_b8) 2014 Goldberg (10.1016/j.conengprac.2018.07.012_b11) 2006 Luo (10.1016/j.conengprac.2018.07.012_b26) 2016; 9 Jiang (10.1016/j.conengprac.2018.07.012_b13) 2016; 46 Jiang (10.1016/j.conengprac.2018.07.012_b16) 2015; 32 Wang (10.1016/j.conengprac.2018.07.012_b34) 2017; 68 Yuan (10.1016/j.conengprac.2018.07.012_b38) 2017; PP Chen (10.1016/j.conengprac.2018.07.012_b3) 2016; 46 Li (10.1016/j.conengprac.2018.07.012_b25) 2000; 10 Jiang (10.1016/j.conengprac.2018.07.012_b17) 2016; 63 Ku (10.1016/j.conengprac.2018.07.012_b22) 1995; 30 Krueger (10.1016/j.conengprac.2018.07.012_b21) 2017; 50 Bakdi (10.1016/j.conengprac.2018.07.012_b1) 2017; 66 Chiang (10.1016/j.conengprac.2018.07.012_b6) 2001 Dong (10.1016/j.conengprac.2018.07.012_b9) 1996; 20 Cheng (10.1016/j.conengprac.2018.07.012_b5) 2010; 49 Jiang (10.1016/j.conengprac.2018.07.012_b12) 2017; PP Tempo (10.1016/j.conengprac.2018.07.012_b32) 2005 Wang (10.1016/j.conengprac.2018.07.012_b33) 2005; 44 Kramer (10.1016/j.conengprac.2018.07.012_b20) 1991; 37 Li (10.1016/j.conengprac.2018.07.012_b24) 2014; 61 Yi (10.1016/j.conengprac.2018.07.012_b36) 2017; PP Chen (10.1016/j.conengprac.2018.07.012_b2) 2011; 38 Zhang (10.1016/j.conengprac.2018.07.012_b39) 2017; 28 Chen (10.1016/j.conengprac.2018.07.012_b4) 2017; PP |
| References_xml | – volume: 32 start-page: 38 year: 2015 end-page: 50 ident: b16 article-title: Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA publication-title: Journal of Process Control – year: 2001 ident: b6 article-title: Fault detection and diagnosis in industrial systems – volume: 50 start-page: 3648 year: 2017 end-page: 3653 ident: b21 article-title: Randomized algorithm based fault detection system design for uncertain LTI systems publication-title: IFac Paper online – volume: 30 start-page: 179 year: 1995 end-page: 196 ident: b22 article-title: Disturbance detection and isolation by dynamic principal component analysis publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 20 start-page: 65 year: 1996 end-page: 78 ident: b9 article-title: Nonlinear principal component analysis — based on principal curves and neural networks publication-title: Computers & Chemical Engineering – volume: 9 start-page: 195 year: 2016 end-page: 206 ident: b26 article-title: Multivariate statistical Kernel PCA for nonlinear process fault diagnosis in military barracks publication-title: International Journal of Hybrid Information Technology – volume: 37 start-page: 233 year: 1991 end-page: 243 ident: b20 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AIChE Journal – volume: 46 start-page: 51 year: 2016 end-page: 58 ident: b3 article-title: Canonical correlation analysis-based fault detection methods publication-title: Control Engineering Practice – volume: PP start-page: 1 year: 2016 end-page: 13 ident: b7 article-title: Nonlinear process fault diagnosis based on serial principal component analysis publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: PP year: 2017 ident: b12 article-title: Data-driven distributed local fault detection for large-scale processes based on GA-regularized canonical correlation analysis publication-title: IEEE Transactions on Industrial Electronics – volume: 4 start-page: 1 year: 2016 end-page: 9 ident: b30 article-title: Nonlinear process fault detection and identification using kernel PCA and kernel density estimation publication-title: Systems Science & Control Engineering – volume: PP year: 2017 ident: b38 article-title: Weighted linear dynamic system for feature representation and soft sensor application in nonlinear dynamic industrial processes publication-title: IEEE Transactions on Industrial Electronics – volume: 52 start-page: 1947 year: 2013 end-page: 1957 ident: b10 article-title: Distributed PCA model for plant-wide process monitoring publication-title: Industrial and Engineering Chemistry Research – volume: 13 start-page: 379 year: 2015 end-page: 396 ident: b35 article-title: A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process publication-title: Journal of Chemometrics – volume: 34 start-page: 29 year: 1991 end-page: 40 ident: b19 article-title: An introduction to randomized algorithms publication-title: Discrete Applied Mathematics – volume: PP year: 2017 ident: b40 article-title: Observation and detection for a class of industrial systems publication-title: IEEE Transactions on Industrial Electronics – volume: 10 start-page: 471 year: 2000 end-page: 486 ident: b25 article-title: Recursive PCA for adaptive process monitoring publication-title: Journal of Process Control – volume: 10 start-page: 1299 year: 1998 end-page: 1319 ident: b31 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Computation – year: 2014 ident: b8 article-title: Data-driven design of fault diagnosis and fault-tolerant control systems – volume: 52 start-page: 1635 year: 2013 end-page: 1644 ident: b18 article-title: Fault detection and diagnosis in chemical processes using sensitive principal component analysis publication-title: Industrial and Engineering Chemistry Research – volume: 49 start-page: 2254 year: 2010 end-page: 2262 ident: b5 article-title: Adaptive Kernel Principal Component Analysis (KPCA) for monitoring small disturbances of nonlinear processes publication-title: Industrial & Engineering Chemistry Research – volume: 136 start-page: 121 year: 2014 end-page: 137 ident: b15 article-title: Monitoring multi-mode plant-wide processes by using mutual information-based multi-block PCA, joint probability, and Bayesian inference publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 11 start-page: 387 year: 2001 end-page: 400 ident: b37 article-title: Fault diagnosis with multivariate statistical models part I: using steady state fault signatures publication-title: Journal of Process Control – volume: 44 start-page: 5691 year: 2005 end-page: 5702 ident: b33 article-title: Process monitoring approach using fast moving window PCA publication-title: Industrial and Engineering Chemistry Research – volume: 40 start-page: 1361 year: 1994 end-page: 1375 ident: b28 article-title: Monitoring batch processes using multiway principal component analysis publication-title: AIChE Journal – volume: 65 start-page: 70 year: 2017 end-page: 82 ident: b41 article-title: A sparse dissimilarity analysis algorithm for incipient fault isolation with no priori fault information publication-title: Control Engineering Practice – volume: PP year: 2017 ident: b4 article-title: Fault detection for non-Gaussian processes using generalized canonical correlation analysis and randomized algorithms publication-title: IEEE Transactions on Industrial Electronics – volume: 66 start-page: 64 year: 2017 end-page: 75 ident: b1 article-title: Fault detection and diagnosis in a cement rotary kiln using PCA with EWMA-based adaptive threshold monitoring scheme publication-title: Control Engineering Practice – volume: 67 start-page: 43 year: 2017 end-page: 51 ident: b27 article-title: A novel data-based quality-related fault diagnosis scheme for fault detection and root cause diagnosis with application to hot strip mill process publication-title: Control Engineering Practice – volume: 61 start-page: 6438 year: 2014 end-page: 6445 ident: b24 article-title: A new method of dynamic latent-variable modeling for process monitoring publication-title: IEEE Transactions on Industrial Electronics – volume: 46 start-page: 75 year: 2016 end-page: 83 ident: b13 article-title: Distributed monitoring for large-scale processes based on multivariate statistical analysis and Bayesian method publication-title: Journal of Process Control – volume: 70 year: 2017 ident: b29 article-title: Data-driven root-cause fault diagnosis for multivariate non-linear processes publication-title: Control Engineering Practice – volume: 38 start-page: 10368 year: 2011 end-page: 10376 ident: b2 article-title: Combining linear and nonlinear model in forecasting tourism demand publication-title: Expert Systems with Applications – year: 2006 ident: b11 article-title: Genetic algorithms – year: 2005 ident: b32 article-title: Randomized algorithms for analysis and control of uncertain systems – volume: PP year: 2017 ident: b36 article-title: A novel framework for fault diagnosis using kernel partial least squares based on optimal preference matrix publication-title: IEEE Transactions on Industrial Electronics – year: 2017 ident: b14 article-title: Optimal variable transmission for distributed local fault detection incorporating RA and evolutionary optimization publication-title: IEEE Access – volume: 63 start-page: 377 year: 2016 end-page: 386 ident: b17 article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference publication-title: IEEE Transactions on Industrial Electronics – volume: 68 start-page: 32 year: 2017 end-page: 45 ident: b34 article-title: Probabilistic fault diagnosis method based on the combination of nest-loop fisher discriminant analysis and analysis of relative changes publication-title: Control Engineering Practice – volume: 59 start-page: 223 year: 2004 end-page: 234 ident: b23 article-title: Nonlinear process monitoring using kernel principal component analysis publication-title: Chemical Engineering Science – volume: 28 start-page: 1606 year: 2017 end-page: 1617 ident: b39 article-title: An alternating identification algorithm for a class of nonlinear dynamical systems publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 66 start-page: 64 year: 2017 ident: 10.1016/j.conengprac.2018.07.012_b1 article-title: Fault detection and diagnosis in a cement rotary kiln using PCA with EWMA-based adaptive threshold monitoring scheme publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2017.06.003 – volume: 46 start-page: 75 year: 2016 ident: 10.1016/j.conengprac.2018.07.012_b13 article-title: Distributed monitoring for large-scale processes based on multivariate statistical analysis and Bayesian method publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2016.08.006 – volume: 32 start-page: 38 year: 2015 ident: 10.1016/j.conengprac.2018.07.012_b16 article-title: Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2015.04.014 – volume: PP year: 2017 ident: 10.1016/j.conengprac.2018.07.012_b36 article-title: A novel framework for fault diagnosis using kernel partial least squares based on optimal preference matrix publication-title: IEEE Transactions on Industrial Electronics – volume: 20 start-page: 65 year: 1996 ident: 10.1016/j.conengprac.2018.07.012_b9 article-title: Nonlinear principal component analysis — based on principal curves and neural networks publication-title: Computers & Chemical Engineering doi: 10.1016/0098-1354(95)00003-K – volume: 52 start-page: 1947 year: 2013 ident: 10.1016/j.conengprac.2018.07.012_b10 article-title: Distributed PCA model for plant-wide process monitoring publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie301945s – volume: PP year: 2017 ident: 10.1016/j.conengprac.2018.07.012_b4 article-title: Fault detection for non-Gaussian processes using generalized canonical correlation analysis and randomized algorithms publication-title: IEEE Transactions on Industrial Electronics – volume: 68 start-page: 32 year: 2017 ident: 10.1016/j.conengprac.2018.07.012_b34 article-title: Probabilistic fault diagnosis method based on the combination of nest-loop fisher discriminant analysis and analysis of relative changes publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2017.07.009 – volume: 9 start-page: 195 year: 2016 ident: 10.1016/j.conengprac.2018.07.012_b26 article-title: Multivariate statistical Kernel PCA for nonlinear process fault diagnosis in military barracks publication-title: International Journal of Hybrid Information Technology doi: 10.14257/ijhit.2016.9.1.17 – volume: 34 start-page: 29 year: 1991 ident: 10.1016/j.conengprac.2018.07.012_b19 article-title: An introduction to randomized algorithms publication-title: Discrete Applied Mathematics doi: 10.1016/0166-218X(91)90086-C – volume: 46 start-page: 51 year: 2016 ident: 10.1016/j.conengprac.2018.07.012_b3 article-title: Canonical correlation analysis-based fault detection methods publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2015.10.006 – volume: 30 start-page: 179 year: 1995 ident: 10.1016/j.conengprac.2018.07.012_b22 article-title: Disturbance detection and isolation by dynamic principal component analysis publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/0169-7439(95)00076-3 – volume: 10 start-page: 471 year: 2000 ident: 10.1016/j.conengprac.2018.07.012_b25 article-title: Recursive PCA for adaptive process monitoring publication-title: Journal of Process Control doi: 10.1016/S0959-1524(00)00022-6 – volume: 59 start-page: 223 year: 2004 ident: 10.1016/j.conengprac.2018.07.012_b23 article-title: Nonlinear process monitoring using kernel principal component analysis publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2003.09.012 – year: 2001 ident: 10.1016/j.conengprac.2018.07.012_b6 – year: 2017 ident: 10.1016/j.conengprac.2018.07.012_b14 article-title: Optimal variable transmission for distributed local fault detection incorporating RA and evolutionary optimization publication-title: IEEE Access – volume: 11 start-page: 387 year: 2001 ident: 10.1016/j.conengprac.2018.07.012_b37 article-title: Fault diagnosis with multivariate statistical models part I: using steady state fault signatures publication-title: Journal of Process Control doi: 10.1016/S0959-1524(00)00008-1 – volume: 61 start-page: 6438 year: 2014 ident: 10.1016/j.conengprac.2018.07.012_b24 article-title: A new method of dynamic latent-variable modeling for process monitoring publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2014.2301761 – year: 2006 ident: 10.1016/j.conengprac.2018.07.012_b11 – year: 2014 ident: 10.1016/j.conengprac.2018.07.012_b8 – volume: 49 start-page: 2254 year: 2010 ident: 10.1016/j.conengprac.2018.07.012_b5 article-title: Adaptive Kernel Principal Component Analysis (KPCA) for monitoring small disturbances of nonlinear processes publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie900521b – volume: 38 start-page: 10368 year: 2011 ident: 10.1016/j.conengprac.2018.07.012_b2 article-title: Combining linear and nonlinear model in forecasting tourism demand publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.02.049 – volume: 63 start-page: 377 year: 2016 ident: 10.1016/j.conengprac.2018.07.012_b17 article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2015.2466557 – volume: 52 start-page: 1635 year: 2013 ident: 10.1016/j.conengprac.2018.07.012_b18 article-title: Fault detection and diagnosis in chemical processes using sensitive principal component analysis publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie3017016 – volume: 44 start-page: 5691 year: 2005 ident: 10.1016/j.conengprac.2018.07.012_b33 article-title: Process monitoring approach using fast moving window PCA publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie048873f – volume: 13 start-page: 379 year: 2015 ident: 10.1016/j.conengprac.2018.07.012_b35 article-title: A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process publication-title: Journal of Chemometrics doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<379::AID-CEM556>3.0.CO;2-N – volume: 67 start-page: 43 year: 2017 ident: 10.1016/j.conengprac.2018.07.012_b27 article-title: A novel data-based quality-related fault diagnosis scheme for fault detection and root cause diagnosis with application to hot strip mill process publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2017.07.005 – volume: 50 start-page: 3648 year: 2017 ident: 10.1016/j.conengprac.2018.07.012_b21 article-title: Randomized algorithm based fault detection system design for uncertain LTI systems publication-title: IFac Paper online doi: 10.1016/j.ifacol.2017.08.711 – volume: 70 year: 2017 ident: 10.1016/j.conengprac.2018.07.012_b29 article-title: Data-driven root-cause fault diagnosis for multivariate non-linear processes publication-title: Control Engineering Practice – volume: 10 start-page: 1299 year: 1998 ident: 10.1016/j.conengprac.2018.07.012_b31 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Computation doi: 10.1162/089976698300017467 – volume: 37 start-page: 233 year: 1991 ident: 10.1016/j.conengprac.2018.07.012_b20 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AIChE Journal doi: 10.1002/aic.690370209 – volume: PP start-page: 1 year: 2016 ident: 10.1016/j.conengprac.2018.07.012_b7 article-title: Nonlinear process fault diagnosis based on serial principal component analysis publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 136 start-page: 121 year: 2014 ident: 10.1016/j.conengprac.2018.07.012_b15 article-title: Monitoring multi-mode plant-wide processes by using mutual information-based multi-block PCA, joint probability, and Bayesian inference publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2014.05.012 – volume: 4 start-page: 1 year: 2016 ident: 10.1016/j.conengprac.2018.07.012_b30 article-title: Nonlinear process fault detection and identification using kernel PCA and kernel density estimation publication-title: Systems Science & Control Engineering doi: 10.1080/21642583.2016.1198940 – volume: 28 start-page: 1606 year: 2017 ident: 10.1016/j.conengprac.2018.07.012_b39 article-title: An alternating identification algorithm for a class of nonlinear dynamical systems publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2547968 – volume: PP year: 2017 ident: 10.1016/j.conengprac.2018.07.012_b12 article-title: Data-driven distributed local fault detection for large-scale processes based on GA-regularized canonical correlation analysis publication-title: IEEE Transactions on Industrial Electronics – volume: 40 start-page: 1361 year: 1994 ident: 10.1016/j.conengprac.2018.07.012_b28 article-title: Monitoring batch processes using multiway principal component analysis publication-title: AIChE Journal doi: 10.1002/aic.690400809 – volume: PP year: 2017 ident: 10.1016/j.conengprac.2018.07.012_b40 article-title: Observation and detection for a class of industrial systems publication-title: IEEE Transactions on Industrial Electronics – volume: PP year: 2017 ident: 10.1016/j.conengprac.2018.07.012_b38 article-title: Weighted linear dynamic system for feature representation and soft sensor application in nonlinear dynamic industrial processes publication-title: IEEE Transactions on Industrial Electronics – year: 2005 ident: 10.1016/j.conengprac.2018.07.012_b32 – volume: 65 start-page: 70 year: 2017 ident: 10.1016/j.conengprac.2018.07.012_b41 article-title: A sparse dissimilarity analysis algorithm for incipient fault isolation with no priori fault information publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2017.05.005 |
| SSID | ssj0016991 |
| Score | 2.6182883 |
| Snippet | Both linear and nonlinear relationships may exist among process variables, and monitoring a process with such complex relationships among variables is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 17 |
| SubjectTerms | Fault detection Genetic algorithm Nonlinear process monitoring Parallel PCA–KPCA Randomized algorithm |
| Title | Parallel PCA–KPCA for nonlinear process monitoring |
| URI | https://dx.doi.org/10.1016/j.conengprac.2018.07.012 |
| Volume | 80 |
| WOSCitedRecordID | wos000447483500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6939 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016991 issn: 0967-0661 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsQwFA2-FroQn_imC3dSmWmSJsHVIIoPkBEVZlfSNEFlrDKO4tJ_8A_9Em-apFUUVMRN6bQkTXMyN3funHsuQpuYtpIC_NCYybyICZFFLCgBYwi-iN1gDC1IVWyCnZzwXk90fbXN-6qcACtL_vQk7v4VargGYNvU2V_AXXcKF-AcQIcjwA7HHwHflQNbH6W_1d3tBCoDPoYPFaOwdNIYVuDapQhs3VTf6kHYwoJqgaew60avsM6oqlk3Vz7YfAp31aW8rU2Ii6r2HrTRvlsfWGhzn2FXR7tCxktDL6rChqmlyzkB9W3tjCZnOE6FEyUKVtXVZ_Jm0aVn-g3WJTp_Mt0uinANM1_C0OwbWeIdr6RVPdP6ozD2mR2LHQpYJasKKEbReMKoANs23jnc6x3V_yalwlVODGP3jC7H8_v6eV-7Ke9cj_MZNO1_M0Qdh_UsGtHlHJp6pyQ5j0hAPQKgX59fLN4R4B3VeEce76jBewFd7O-d7x7EviBGrMD0DmNDJWlJkRYF5jKhBlxDTqlMcaIJVyYFbxqbnEljCmmSIiEKPGgjFKckp6lJ8CIag8fqJRS1MMMqTyg0lARLwttt6E4xrHXOjNbLiIX3z5RXi7dFS_pZoAVeZ83MZXbmshbLYOaWUbtueecUU37QZidMceY9P-fRZbA6vm298qfWq2iyWf1raGw4eNDraEI9Dq_uBxt-Kb0BqfqBZw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+PCA%E2%80%93KPCA+for+nonlinear+process+monitoring&rft.jtitle=Control+engineering+practice&rft.au=Jiang%2C+Qingchao&rft.au=Yan%2C+Xuefeng&rft.date=2018-11-01&rft.pub=Elsevier+Ltd&rft.issn=0967-0661&rft.eissn=1873-6939&rft.volume=80&rft.spage=17&rft.epage=25&rft_id=info:doi/10.1016%2Fj.conengprac.2018.07.012&rft.externalDocID=S0967066118303289 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |