Predictive models for emission of hydrogen powered car using various artificial intelligent tools

This paper investigates the use of artificial intelligent models as virtual sensors to predict relevant emissions such as carbon dioxide, carbon monoxide, unburnt hydrocarbons and oxides of nitrogen for a hydrogen powered car. The virtual sensors are developed by means of application of various Arti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computing & applications Ročník 18; číslo 5; s. 469 - 476
Hlavní autori: Karri, Vishy, Ho, Tien Nhut
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: London Springer-Verlag 01.06.2009
Springer
Predmet:
ISSN:0941-0643, 1433-3058
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper investigates the use of artificial intelligent models as virtual sensors to predict relevant emissions such as carbon dioxide, carbon monoxide, unburnt hydrocarbons and oxides of nitrogen for a hydrogen powered car. The virtual sensors are developed by means of application of various Artificial Intelligent (AI) models namely; AI software built at the University of Tasmania, back-propagation neural networks with Levenberg–Marquardt algorithm, and adaptive neuro-fuzzy inference systems. These predictions are based on the study of qualitative and quantitative effects of engine process parameters such as mass airflow, engine speed, air-to-fuel ratio, exhaust gas temperature and engine power on the harmful exhaust gas emissions. All AI models show good predictive capability in estimating the emissions. However, excellent accuracy is achieved when using back-propagation neural networks with Levenberg–Marquardt algorithm in estimating emissions for various hydrogen engine operating conditions with the predicted values less than 6% of percentage average root mean square error.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-008-0218-y