Local Smoothing for Scattering Manifolds with Hyperbolic Trapped Sets

We prove a resolvent estimate for the Laplace-Beltrami operator on a scattering manifold with a hyperbolic trapped set, and as a corollary deduce local smoothing. We use a result of Nonnenmacher-Zworski to provide an estimate near the trapped region, a result of Burq and Cardoso-Vodev to provide an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications in mathematical physics Ročník 286; číslo 3; s. 837 - 850
Hlavní autor: Datchev, Kiril
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.03.2009
Springer
Témata:
ISSN:0010-3616, 1432-0916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We prove a resolvent estimate for the Laplace-Beltrami operator on a scattering manifold with a hyperbolic trapped set, and as a corollary deduce local smoothing. We use a result of Nonnenmacher-Zworski to provide an estimate near the trapped region, a result of Burq and Cardoso-Vodev to provide an estimate near infinity, and the microlocal calculus on scattering manifolds to combine the two.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-008-0684-1