Local Smoothing for Scattering Manifolds with Hyperbolic Trapped Sets
We prove a resolvent estimate for the Laplace-Beltrami operator on a scattering manifold with a hyperbolic trapped set, and as a corollary deduce local smoothing. We use a result of Nonnenmacher-Zworski to provide an estimate near the trapped region, a result of Burq and Cardoso-Vodev to provide an...
Gespeichert in:
| Veröffentlicht in: | Communications in mathematical physics Jg. 286; H. 3; S. 837 - 850 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer-Verlag
01.03.2009
Springer |
| Schlagworte: | |
| ISSN: | 0010-3616, 1432-0916 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We prove a resolvent estimate for the Laplace-Beltrami operator on a scattering manifold with a hyperbolic trapped set, and as a corollary deduce local smoothing. We use a result of Nonnenmacher-Zworski to provide an estimate near the trapped region, a result of Burq and Cardoso-Vodev to provide an estimate near infinity, and the microlocal calculus on scattering manifolds to combine the two. |
|---|---|
| ISSN: | 0010-3616 1432-0916 |
| DOI: | 10.1007/s00220-008-0684-1 |