Data mining–based hierarchical cooperative coevolutionary algorithm for TSK-type neuro-fuzzy networks design

This study proposes a data mining–based hierarchical cooperative coevolutionary algorithm (DMHCCA) for TSK-type neuro-fuzzy networks design. The proposed DMHCCA consists of two-level evolutions: the neuro-level evolution (NULE) and the network-level evolution (NWLE). In NULE, a data mining–based evo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computing & applications Ročník 23; číslo 2; s. 485 - 498
Hlavní autori: Hsu, Chi-Yao, Lin, Sheng-Fuu, Chang, Jyun-Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.08.2013
Springer
Predmet:
ISSN:0941-0643, 1433-3058
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This study proposes a data mining–based hierarchical cooperative coevolutionary algorithm (DMHCCA) for TSK-type neuro-fuzzy networks design. The proposed DMHCCA consists of two-level evolutions: the neuro-level evolution (NULE) and the network-level evolution (NWLE). In NULE, a data mining–based evolutionary learning algorithm is utilized to evolve neurons. The good combinations of neurons evolved in NULE are reserved for being the initial populations of NWLE. In NWLE, the initial population are mated and mutated to produce new structure of networks. Similar to NULE, the good neurons of evolved network in NWLE are inserted into the NULE. Thus, by interactive two-level evolutions, the neurons and structure of network can be evolved locally and globally, respectively. Simulation results using DMHCCA are reported and compared with other existing models. Application of DMHCCA to a three-dimensional (3D) surface alignment task is also described, and experimental results are presented better performance than other alignment systems.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-012-0943-0