A Primal-Dual Approximation Algorithm for the Facility Location Problem with Submodular Penalties
We consider the facility location problem with submodular penalties (FLPSP), introduced by Hayrapetyan et al. (Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 933–942, 2005 ), who presented a 2.50-approximation algorithm that is non-combinatorial because thi...
Uloženo v:
| Vydáno v: | Algorithmica Ročník 63; číslo 1-2; s. 191 - 200 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer-Verlag
01.06.2012
Springer |
| Témata: | |
| ISSN: | 0178-4617, 1432-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the facility location problem with submodular penalties (FLPSP), introduced by Hayrapetyan et al. (Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 933–942,
2005
), who presented a 2.50-approximation algorithm that is
non-combinatorial
because this algorithm has to solve the LP-relaxation of an integer program with exponential number of variables. The only known polynomial algorithm for this exponential LP is via the ellipsoid algorithm as the corresponding separation problem for its dual program can be solved in polynomial time. By exploring the properties of the submodular function, we offer a primal-dual 3-approximation
combinatorial
algorithm for this problem. |
|---|---|
| ISSN: | 0178-4617 1432-0541 |
| DOI: | 10.1007/s00453-011-9526-1 |