A Primal-Dual Approximation Algorithm for the Facility Location Problem with Submodular Penalties

We consider the facility location problem with submodular penalties (FLPSP), introduced by Hayrapetyan et al. (Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 933–942, 2005 ), who presented a 2.50-approximation algorithm that is non-combinatorial because thi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 63; číslo 1-2; s. 191 - 200
Hlavní autoři: Du, Donglei, Lu, Ruixing, Xu, Dachuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer-Verlag 01.06.2012
Springer
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the facility location problem with submodular penalties (FLPSP), introduced by Hayrapetyan et al. (Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 933–942, 2005 ), who presented a 2.50-approximation algorithm that is non-combinatorial because this algorithm has to solve the LP-relaxation of an integer program with exponential number of variables. The only known polynomial algorithm for this exponential LP is via the ellipsoid algorithm as the corresponding separation problem for its dual program can be solved in polynomial time. By exploring the properties of the submodular function, we offer a primal-dual 3-approximation combinatorial algorithm for this problem.
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-011-9526-1