Multi-objective dynamic optimization of path-constrained switched systems

A multi-objective dynamic optimization algorithm is proposed for path-constrained switched systems to locate approximated local Pareto solutions with specified tolerances. The algorithm is based on iteratively solving single-objective modified ϵ-constraint dynamic optimization problems to avoid gene...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatica (Oxford) Ročník 159; s. 111326
Hlavní autoři: Zhang, Chi, Fu, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2024
Témata:
ISSN:0005-1098, 1873-2836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A multi-objective dynamic optimization algorithm is proposed for path-constrained switched systems to locate approximated local Pareto solutions with specified tolerances. The algorithm is based on iteratively solving single-objective modified ϵ-constraint dynamic optimization problems to avoid generating weak Pareto solutions. These problems are first reduced to semi-infinite programs embedded with ordinary differential equations by performing the control vector parameterization technique. Then the guaranteed feasibility is attained within a finite number of iterations by enforcing the path constraints at discretized time points with a restriction parameter on the right-hand side. Furthermore, the approximation error of the obtained local Pareto solutions is quantitatively analyzed. The result shows that the Pareto approximation error can be directly controlled via user-specified parameters. Finally, the effectiveness of the algorithm is illustrated via a numerical example.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2023.111326