A Segmentation-Based CFAR Detector With Spatial Continuity Constraint in Nonhomogeneous Weather Clutter
The performance of conventional constant false alarm rate (CFAR) detectors may degrade in nonhomogeneous clutter environments, as accurately estimating the clutter distribution in the cell under test (CUT) using reference cells becomes challenging. In this article, a CFAR detector based on clutter s...
Uložené v:
| Vydané v: | IEEE transactions on aerospace and electronic systems Ročník 61; číslo 2; s. 3306 - 3322 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9251, 1557-9603 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The performance of conventional constant false alarm rate (CFAR) detectors may degrade in nonhomogeneous clutter environments, as accurately estimating the clutter distribution in the cell under test (CUT) using reference cells becomes challenging. In this article, a CFAR detector based on clutter segmentation with spatial continuity constraints is proposed for target detection within nonhomogeneous weather clutter backgrounds. Analysis of real weather clutter collected by a high-resolution phased array radar indicates that the Rayleigh mixture model can precisely characterize the amplitude distribution of nonhomogeneous weather clutter in spatial domain. The hidden Markov random field model is employed to capture the spatial correlation of weather clutter. Based on this model, clutter segmentation is implemented using the variational expectation-maximization algorithm, which provides the posterior class of clutter in each range cell and the estimated parameter of each class. Simulation results indicate that introducing the spatial continuity improves the accuracy of clutter segmentation and parameter estimation. A CFAR detection scheme is proposed, which utilizes the segmentation results to estimate the clutter distribution of the CUT and set the detection threshold accordingly. Experiments conducted using both simulated data and real weather clutter have demonstrated that the proposed method improves detection performance. The proposed method exhibit a maximum increase in detection probability of 8.97% compared to the best-performing benchmark method when the false alarm rate is 10^{-6} in real weather clutter. |
|---|---|
| AbstractList | The performance of conventional constant false alarm rate (CFAR) detectors may degrade in nonhomogeneous clutter environments, as accurately estimating the clutter distribution in the cell under test (CUT) using reference cells becomes challenging. In this article, a CFAR detector based on clutter segmentation with spatial continuity constraints is proposed for target detection within nonhomogeneous weather clutter backgrounds. Analysis of real weather clutter collected by a high-resolution phased array radar indicates that the Rayleigh mixture model can precisely characterize the amplitude distribution of nonhomogeneous weather clutter in spatial domain. The hidden Markov random field model is employed to capture the spatial correlation of weather clutter. Based on this model, clutter segmentation is implemented using the variational expectation-maximization algorithm, which provides the posterior class of clutter in each range cell and the estimated parameter of each class. Simulation results indicate that introducing the spatial continuity improves the accuracy of clutter segmentation and parameter estimation. A CFAR detection scheme is proposed, which utilizes the segmentation results to estimate the clutter distribution of the CUT and set the detection threshold accordingly. Experiments conducted using both simulated data and real weather clutter have demonstrated that the proposed method improves detection performance. The proposed method exhibit a maximum increase in detection probability of 8.97% compared to the best-performing benchmark method when the false alarm rate is 10^{-6} in real weather clutter. |
| Author | Cai, Jiong Yu, Teng Li, Weidong Yan, Yujia Hu, Cheng Wang, Rui |
| Author_xml | – sequence: 1 givenname: Yujia orcidid: 0000-0003-0759-8722 surname: Yan fullname: Yan, Yujia organization: Radar Research Laboratory, School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Cheng orcidid: 0000-0001-7582-5291 surname: Hu fullname: Hu, Cheng organization: Radar Research Laboratory, School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Jiong orcidid: 0000-0003-3911-5510 surname: Cai fullname: Cai, Jiong email: az123jiong@foxmail.com organization: Radar Research Laboratory, School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Weidong orcidid: 0000-0002-1774-7800 surname: Li fullname: Li, Weidong organization: Radar Research Laboratory, School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Teng surname: Yu fullname: Yu, Teng organization: Radar Research Laboratory, School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 6 givenname: Rui orcidid: 0000-0002-3510-7356 surname: Wang fullname: Wang, Rui organization: Radar Research Laboratory, School of Information and Electronics, Beijing Institute of Technology, Beijing, China |
| BookMark | eNpNkF9PwjAUxRujiYB-ABMfmvg8bNdu6x7nBDUhmgiGx6aMWyiBFtvugW_vFnjwvtw_Oeee5DdE19ZZQOiBkjGlpHxeVJP5OCUpHzMuCsrEFRrQLCuSMifsGg0IoSIp04zeomEIu27lgrMB2lR4DpsD2KiicTZ5UQHWuJ5W3_gVIjTRebw0cYvnx06g9rh2NhrbmnjqxxC9MjZiY_Gns1t3cBuw4NqAl6DiFjyu922M4O_QjVb7APeXPkI_08mifk9mX28fdTVLGkZFTDKdKiLybEWJpopzzTLNuRJ5uWaNalZNKXSuhFbFWjcpLcpUZDlb6-5CgQjBRujp_Pfo3W8LIcqda73tImUX0BVned6p6FnVeBeCBy2P3hyUP0lKZM9T9jxlz1NeeHaex7PHAMA_fcGKlFH2B8XIdB4 |
| CODEN | IEARAX |
| Cites_doi | 10.1109/TAES.2023.3245053 10.1109/78.157297 10.1109/TAES.1976.308352 10.1109/TAES.2023.3286830 10.1109/TPAMI.2003.1240112 10.1109/TGRS.2021.3131272 10.1109/7.53424 10.1109/TGRS.2023.3275163 10.1109/TAES.2017.2671798 10.1109/TGRS.2014.2349575 10.1109/78.887045 10.1109/MSP.2004.1311138 10.1109/TIP.2006.891045 10.1109/TMI.2006.880682 10.1109/TGRS.2022.3205737 10.1007/s11432-023-3889-7 10.1109/TGRS.2015.2506822 10.1155/2022/7596449 10.1109/79.543975 10.1109/TAES.2022.3206256 10.1109/TSP.2021.3050985 10.1109/TSP.2023.3250084 10.1126/science.aat7526 10.1109/TAES.2014.130209 10.1109/TAES.1978.308554 10.1109/TIP.2010.2047903 10.1109/MSP.2008.929620 10.1109/TAES.2020.3046050 10.1109/TAES.2020.3017319 10.1109/83.210863 10.1109/7.7185 10.1080/17455030601097927 10.1109/42.906424 10.1080/01621459.1951.10500769 10.1109/TGRS.2023.3250990 10.1007/s11432-020-3211-8 10.1109/7.766939 10.1109/TGRS.2015.2451311 10.1109/TAES.2017.2740065 10.1109/TAES.1984.310453 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
| DOI | 10.1109/TAES.2024.3487138 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9603 |
| EndPage | 3322 |
| ExternalDocumentID | 10_1109_TAES_2024_3487138 10737231 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Defense Basic Scientific Research program of China grantid: JCKY2020602C019 funderid: 10.13039/501100012335 |
| GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
| ID | FETCH-LOGICAL-c318t-5f2a0865b10f1a44f35f44a869d3cacbc98f6a8fa7dfc217928563df8fa1e0883 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001464959300047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9251 |
| IngestDate | Tue Jul 22 18:41:12 EDT 2025 Sat Nov 29 08:02:23 EST 2025 Wed Aug 27 02:03:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c318t-5f2a0865b10f1a44f35f44a869d3cacbc98f6a8fa7dfc217928563df8fa1e0883 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0759-8722 0000-0002-3510-7356 0000-0002-1774-7800 0000-0001-7582-5291 0000-0003-3911-5510 |
| PQID | 3188884366 |
| PQPubID | 85477 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_TAES_2024_3487138 proquest_journals_3188884366 ieee_primary_10737231 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on aerospace and electronic systems |
| PublicationTitleAbbrev | T-AES |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref32 ref2 ref1 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref43 Celeux (ref36) 2003; 36 ref28 ref27 Xie (ref10) 2023; 39 ref29 ref8 ref7 ref9 Cheng (ref21) 2022; 128 ref4 Yang (ref17) 2018; 151 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref9 doi: 10.1109/TAES.2023.3245053 – ident: ref35 doi: 10.1109/78.157297 – ident: ref31 doi: 10.1109/TAES.1976.308352 – ident: ref2 doi: 10.1109/TAES.2023.3286830 – volume: 36 start-page: 131 issue: 1 volume-title: Pattern Recognit. year: 2003 ident: ref36 article-title: EM procedures using mean field-like approximations for Markov model-based image segmentation – ident: ref18 doi: 10.1109/TPAMI.2003.1240112 – ident: ref24 doi: 10.1109/TGRS.2021.3131272 – ident: ref40 doi: 10.1109/7.53424 – ident: ref5 doi: 10.1109/TGRS.2023.3275163 – ident: ref42 doi: 10.1109/TAES.2017.2671798 – volume: 151 start-page: 144 volume-title: Signal Process. year: 2018 ident: ref17 article-title: MRF model-based joint interrupted SAR imaging and coherent change detection via variational bayesian inference – ident: ref23 doi: 10.1109/TGRS.2014.2349575 – ident: ref28 doi: 10.1109/78.887045 – ident: ref37 doi: 10.1109/MSP.2004.1311138 – ident: ref33 doi: 10.1109/TIP.2006.891045 – ident: ref16 doi: 10.1109/TMI.2006.880682 – ident: ref4 doi: 10.1109/TGRS.2022.3205737 – ident: ref25 doi: 10.1007/s11432-023-3889-7 – ident: ref13 doi: 10.1109/TGRS.2015.2506822 – ident: ref30 doi: 10.1155/2022/7596449 – ident: ref29 doi: 10.1109/79.543975 – ident: ref8 doi: 10.1109/TAES.2022.3206256 – ident: ref15 doi: 10.1109/TSP.2021.3050985 – ident: ref6 doi: 10.1109/TSP.2023.3250084 – ident: ref1 doi: 10.1126/science.aat7526 – ident: ref14 doi: 10.1109/TAES.2014.130209 – ident: ref38 doi: 10.1109/TAES.1978.308554 – ident: ref20 doi: 10.1109/TIP.2010.2047903 – ident: ref34 doi: 10.1109/MSP.2008.929620 – ident: ref44 doi: 10.1109/TAES.2020.3046050 – ident: ref7 doi: 10.1109/TAES.2020.3017319 – volume: 39 start-page: 496 issue: 3 year: 2023 ident: ref10 article-title: Ship target detection method in SAR imagery based on eigenvalue decomposition of the toeplitz matrix publication-title: J. Signal Process. – ident: ref19 doi: 10.1109/83.210863 – ident: ref43 doi: 10.1109/7.7185 – ident: ref32 doi: 10.1080/17455030601097927 – ident: ref22 doi: 10.1109/42.906424 – volume: 128 volume-title: Pattern Recognit. year: 2022 ident: ref21 article-title: A spatially constrained skew Student’st mixture model for brain MR image segmentation and bias field correction – ident: ref27 doi: 10.1080/01621459.1951.10500769 – ident: ref3 doi: 10.1109/TGRS.2023.3250990 – ident: ref11 doi: 10.1007/s11432-020-3211-8 – ident: ref26 doi: 10.1109/7.766939 – ident: ref41 doi: 10.1109/TGRS.2015.2451311 – ident: ref12 doi: 10.1109/TAES.2017.2740065 – ident: ref39 doi: 10.1109/TAES.1984.310453 |
| SSID | ssj0014843 |
| Score | 2.4520876 |
| Snippet | The performance of conventional constant false alarm rate (CFAR) detectors may degrade in nonhomogeneous clutter environments, as accurately estimating the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3306 |
| SubjectTerms | Aerospace and electronic systems Algorithms Clutter Clutter segmentation Constant false alarm rate Constraints Detectors False alarms Fields (mathematics) Hidden Markov models hidden Markov random field (HMRF) Meteorology Mixture models Parameter estimation Phased arrays Probabilistic models Radar arrays Radar clutter Radar detection Rain Segmentation Simulation Target detection variational expectation-maximization algorithm Weather weather clutter |
| Title | A Segmentation-Based CFAR Detector With Spatial Continuity Constraint in Nonhomogeneous Weather Clutter |
| URI | https://ieeexplore.ieee.org/document/10737231 https://www.proquest.com/docview/3188884366 |
| Volume | 61 |
| WOSCitedRecordID | wos001464959300047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014843 issn: 0018-9251 databaseCode: RIE dateStart: 19650101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT4MwFG908aAHP2ecTtODJxMm0FLKEecWT4txM9uNQGk3EgdmgH-_r4WZJcaDnFoCCfR9t--9H0L3hOg-SpJYgRS2RVOIWSEEkzBlrnA9lyexMmAT_mTCF4vgtS1WN7UwUkqTfCYHemjO8tNC1HqrDCRcg6roqul932dNsdbPkQHlbYqcAxIMVrs9wnTs4HEWjqYQCrp0QMA_d3Qtyo4RMqgqv1SxsS_jk39-2Sk6bh1JHDaUP0N7Mj9HRzvtBS_QMsRTuVy31UW59QQWK8XDcfiGn2VltuvxPKtWWOMSAx9i3aoqy2twzPWwNPARFc5yPCnyVbEugNlkUZd43viNePhhYK676H08mg1frBZYwRIgwpXlKTeGUMZLHFs5MaWKeIrSmLMgJSIWiQi4YjFXsZ8qATFL4HKPkVTBHUeCWiKXqJMXubxC2E4TmLMkUUx3E3MTD1RETLnnOyplCe-hh-1KR59N_4zIxB12EGmyRJosUUuWHurqpd15sFnVHupviRO1IlZG8CdwUcLY9R-v3aBDV6P1mjybPupUm1reogPxVWXl5s5wzzeEPsJy |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT4MwFG-MmqgHv43zswdPJii0pSvHOV00TmLczHYjUNqNxIER5t_va0GzxHiQU0sggb7v9r33Q-iCUtNHSVEnUNJ1WAoxK4RgCqacSOITkcTagk20w1CMx8FzU6xua2GUUjb5TF2ZoT3LTws5N1tlIOEGVMVUTa_4jBG3Ltf6OTRgokmS80CGwW43h5ieG1wPO3cDCAYJu6LgoXumGmXBDFlclV_K2FqY3tY_v20bbTauJO7UtN9BSyrfRRsLDQb30KSDB2oya-qLcucGbFaKu73OC75Vld2wx6OsmmKDTAyciE2zqiyfg2tuhqUFkKhwluOwyKfFrAB2U8W8xKPac8TdNwt0vY9ee3fD7r3TQCs4EoS4cnxNYghm_MRztRczpqmvGYsFD1IqY5nIQGgeCx23Uy0hagmI8DlNNdzxFCgmeoCW8yJXhwi7aQJzniSam35iJPFBScRM-G1PpzwRLXT5vdLRe91BI7KRhxtEhiyRIUvUkKWF9s3SLjxYr2oLnXwTJ2qErIzgT-BilPOjP147R2v3w6d-1H8IH4_ROjHYvTbr5gQtVx9zdYpW5WeVlR9nlpO-AMyIxbk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Segmentation-Based+CFAR+Detector+With+Spatial+Continuity+Constraint+in+Nonhomogeneous+Weather+Clutter&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Yan%2C+Yujia&rft.au=Hu%2C+Cheng&rft.au=Cai%2C+Jiong&rft.au=Li%2C+Weidong&rft.date=2025-04-01&rft.pub=IEEE&rft.issn=0018-9251&rft.volume=61&rft.issue=2&rft.spage=3306&rft.epage=3322&rft_id=info:doi/10.1109%2FTAES.2024.3487138&rft.externalDocID=10737231 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |