A composite particle swarm optimization algorithm with future information inspired by non-equidistant grey predictive evolution for global optimization problems and engineering problems

Particle swarm optimization (PSO) and its numerous performance-enhancing variants are a kind of stochastic optimization technique based on collaborative sharing of swarm information. Many variants took current particles and historical particles as current and historical information to improve their...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in engineering software (1992) Ročník 202; s. 103868
Hlavní autori: Hao, Rui, Hu, Zhongbo, Xiong, WenTao, Jiang, Shaojie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.04.2025
Predmet:
ISSN:0965-9978
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Particle swarm optimization (PSO) and its numerous performance-enhancing variants are a kind of stochastic optimization technique based on collaborative sharing of swarm information. Many variants took current particles and historical particles as current and historical information to improve their performance. If future information after each current swarm can be mined to participate in collaborative search, the algorithmic performance could benefit from the comprehensiveness of the information including historical, current and future information. This paper proposes a composite particle swarm optimization algorithm with future information inspired by non-equidistant grey predictive evolution, namely NeGPPSO. The proposed algorithm firstly employs non-equidistant grey predictive evolution algorithm to predict a future particle as future information for each particle of a current swarm. Secondly, four particles including prediction particle, particle best and swarm best of the current swarm, and a history memory particle are used as guide particles to generate four candidate positions. Finally, the best one in the four positions is greedily selected as an offspring particle. Numerical experiments are conducted on 42 benchmark functions given by the Congress on Evolutionary Computation 2014/2022 and 3 engineering problems. The experimental results demonstrate the overall advantages of the proposed NeGPPSO over several state-of-art algorithms. •Integrate future information for the first time to improve PSO algorithm.•Present a composite particle swarm optimization with future information.•Apply NeGPE’s predictive ability to predict future information for particles.•The proposed algorithm outperforms the state-of-the-art on several test suites.•The proposed algorithm surpasses the comparative algorithms in engineering problems.
AbstractList Particle swarm optimization (PSO) and its numerous performance-enhancing variants are a kind of stochastic optimization technique based on collaborative sharing of swarm information. Many variants took current particles and historical particles as current and historical information to improve their performance. If future information after each current swarm can be mined to participate in collaborative search, the algorithmic performance could benefit from the comprehensiveness of the information including historical, current and future information. This paper proposes a composite particle swarm optimization algorithm with future information inspired by non-equidistant grey predictive evolution, namely NeGPPSO. The proposed algorithm firstly employs non-equidistant grey predictive evolution algorithm to predict a future particle as future information for each particle of a current swarm. Secondly, four particles including prediction particle, particle best and swarm best of the current swarm, and a history memory particle are used as guide particles to generate four candidate positions. Finally, the best one in the four positions is greedily selected as an offspring particle. Numerical experiments are conducted on 42 benchmark functions given by the Congress on Evolutionary Computation 2014/2022 and 3 engineering problems. The experimental results demonstrate the overall advantages of the proposed NeGPPSO over several state-of-art algorithms. •Integrate future information for the first time to improve PSO algorithm.•Present a composite particle swarm optimization with future information.•Apply NeGPE’s predictive ability to predict future information for particles.•The proposed algorithm outperforms the state-of-the-art on several test suites.•The proposed algorithm surpasses the comparative algorithms in engineering problems.
ArticleNumber 103868
Author Hu, Zhongbo
Hao, Rui
Xiong, WenTao
Jiang, Shaojie
Author_xml – sequence: 1
  givenname: Rui
  surname: Hao
  fullname: Hao, Rui
  email: 2022710192@yangtzeu.edu.cn
  organization: School of Information and Mathematics, Yangtze University, Jingzhou, Hubei, China
– sequence: 2
  givenname: Zhongbo
  orcidid: 0000-0002-3685-2753
  surname: Hu
  fullname: Hu, Zhongbo
  email: huzbdd@126.com
  organization: School of Information and Mathematics, Yangtze University, Jingzhou, Hubei, China
– sequence: 3
  givenname: WenTao
  surname: Xiong
  fullname: Xiong, WenTao
  email: xiong2017@hbeu.edu.cn
  organization: School of Mathematics and Statistics, Hubei Engineering University, Xiaogan, Hubei, China
– sequence: 4
  givenname: Shaojie
  surname: Jiang
  fullname: Jiang, Shaojie
  email: shaojie223@yangtzeu.edu.cn
  organization: Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
BookMark eNqNkN1u1DAQhX1RJNrCO8wLZLGTjTe5QSoVP5UqcQPXln_GYVaJHWzvVsub8Xa4XQSCG5BGHsnjczznu2IXIQZkDATfCC7kq_1GuyOGKUdfNi1v-3rdDXK4YJd8lH0zjrvhObvKec-52PJWXLLvN2DjssZMBWHVqZCdEfKDTgvEtdBC33ShGEDPU0xUvizwUE_wh3JICBR8TMv5BYW8UkIH5gR1sQa_HshRLjoUmBKeYK1DsoWOCHiM8-FJVfUwzdHo-c__1hTNjEsGHRzUTBQQE4Xp1-AFe-b1nPHlz37NPr97--n2Q3P_8f3d7c19YzsxlKaX2Dux3Rnu5M74WoajN_3gzOhcL60cfKtHy0fvjJB-1_Wt1h6t3Mqux667Zq_PvjbFnBN6Zak87ViSplkJrh7hq736DV89wldn-NVg-MtgTbTodPof6ZuzFGvAI2FS2RIGWzkmtEW5SP82-QH6LbNx
CitedBy_id crossref_primary_10_3390_math13071114
crossref_primary_10_3390_buildings15132236
Cites_doi 10.1016/j.swevo.2011.02.002
10.1016/j.apm.2019.10.026
10.3139/120.111529
10.1016/j.ins.2008.02.014
10.1007/s11276-020-02446-5
10.1007/s10922-016-9385-9
10.1016/j.ins.2023.03.086
10.1145/1569901.1570147
10.1016/S1474-0346(02)00011-3
10.1016/j.aei.2022.101525
10.1016/j.ins.2014.09.030
10.1109/TCYB.2015.2474153
10.1016/j.asoc.2016.05.032
10.1007/s10489-020-02045-z
10.1109/TEVC.2004.826074
10.1016/j.jhydrol.2022.128463
10.1016/j.asoc.2012.11.026
10.1016/j.conbuildmat.2017.11.006
10.1016/j.engappai.2021.104454
10.1007/s00500-018-3331-6
10.1007/s00158-009-0454-5
10.1109/ACCESS.2020.2992116
10.1016/j.compstruc.2016.03.001
10.1016/j.asoc.2009.08.031
10.1007/s11831-021-09694-4
10.1016/j.chaos.2022.112024
10.1016/j.ins.2019.08.065
10.1109/TCYB.2015.2424836
10.1109/TEVC.2005.857610
10.1016/j.asoc.2022.109081
10.1016/j.eswa.2015.05.050
10.1109/ACCESS.2023.3250228
10.1016/j.eswa.2010.09.104
10.1016/j.ins.2012.04.028
10.1109/TCYB.2019.2943928
10.1016/j.swevo.2023.101276
10.1016/j.engappai.2006.03.003
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.advengsoft.2025.103868
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
ExternalDocumentID 10_1016_j_advengsoft_2025_103868
S0965997825000067
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c318t-56e5d147b0d67bf7bfb0efb58db9dd56c68f2a9c09fdb16f7352aafec64635e33
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001420573300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0965-9978
IngestDate Sat Nov 29 08:19:26 EST 2025
Tue Nov 18 22:10:47 EST 2025
Sat Mar 01 15:46:29 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Future information
Improved particle swarm optimization algorithm
Non-equidistant grey prediction evolutionary algorithm
Particle swarm optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-56e5d147b0d67bf7bfb0efb58db9dd56c68f2a9c09fdb16f7352aafec64635e33
ORCID 0000-0002-3685-2753
ParticipantIDs crossref_citationtrail_10_1016_j_advengsoft_2025_103868
crossref_primary_10_1016_j_advengsoft_2025_103868
elsevier_sciencedirect_doi_10_1016_j_advengsoft_2025_103868
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationTitle Advances in engineering software (1992)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xiang, Su, Huang, Hu (b29) 2022; 125
Biedrzycki, Arabas, Warchulski (b22) 2022
Awad, Ali, Suganthan (b39) 2017
Zhang, Lin, Gao, Li (b42) 2015; 42
Liu, Cai, Wang (b45) 2010; 10
Li, Zhang, Wang, Yan (b20) 2022; 51
He, Wang (b51) 2007; 186
Wang, Li (b46) 2010; 41
Qi, Fourie, Chen (b23) 2018; 159
Masdari, Salehi, Jalali, Bidaki (b25) 2017; 25
Li, Su, Hu (b31) 2023
He, Wang (b50) 2007; 20
Coello, Montes (b48) 2002; 16
Ji, Tian, He, Zhu (b13) 2012
Djemame, Batouche, Oulhadj, Siarry (b26) 2019; 23
Brest, Maučec, Bošković (b38) 2017
Zhu, Xiao, Kang, Kong (b34) 2022; 158
Liang, Qu, Suganthan (b21) 2013
Mohamed, Hadi, Fattouh, Jambi (b40) 2017
Xiang, Su, Hu (b35) 2023; 78
Sadollah, Bahreininejad, Eskandar, Hamdi (b47) 2013; 13
Guo, Zhou, Di, Shi, Yan, Sato (b18) 2023; 11
Liang, Qin, Suganthan, Baskar (b5) 2006; 10
Nasir, Das, Maity, Sengupta, Halder, Suganthan (b12) 2012; 209
Zhang, Nie, Yang, Wang, Liu, Jeon, Zhang (b10) 2023; 633
Chaitanya, Somayajulu, Krishna (b17) 2021; 51
Li, Zhang, Jiang, Zhou (b14) 2015; 45
Aderyani, Mousavi, Jafari (b19) 2022; 614
Zhan Zhi-Hui, Zhang Jun, Liu Ou. Orthogonal learning particle swarm optimization. In: Proceedings of the 11th annual conference on genetic and evolutionary computation. 2009, p. 1763–4.
Hu, Xu, Su, Zhu, Guo (b30) 2020; 79
Mühlenbein, Paass (b28) 1996
Kanwar, Kumar (b24) 2021; 27
Xia, Gui, Yu, Wu, Wei, Zhang, Zhan (b16) 2019; 50
Askarzadeh (b44) 2016; 169
Gad (b27) 2022; 29
Cai, Su, Hu (b33) 2021; 106
Parsopoulos, Vrahatis (b8) 2019
Zhang, Luo, Wang (b43) 2008; 178
Qin, Cheng, Zhang, Li, Shi (b7) 2015; 46
Derrac, García, Molina, Herrera (b36) 2011; 1
Kennedy, Eberhart (b1) 1995
Mezura-Montes Efrén, Coello CA Coello, Velázquez-Reyes Jesús. Increasing successful offspring and diversity in differential evolution for engineering design. In: Proceedings of the seventh international conference on adaptive computing in design and manufacture. ACDM 2006, 2006, p. 131–9.
Hu, Li, Dai, Xu, Xiong, Su (b32) 2020; 8
Luo, Sun, Bu, Liang (b15) 2016; 47
Kumar, Misra, Singh (b37) 2017
Mendes, Kennedy, Neves (b4) 2004; 8
Li, Zhan, Lin, Zhang, Luo (b3) 2015; 293
Xia, Gui, He, Wei, Zhang, Yu, Wu, Zhan (b9) 2020; 508
Eberhart, Kennedy (b2) 1995
Liu, Gao, Pan (b11) 2011; 38
Panagant, Pholdee, Bureerat, Kaen, Yıldız, Sait (b41) 2020; 62
Liu (10.1016/j.advengsoft.2025.103868_b45) 2010; 10
Sadollah (10.1016/j.advengsoft.2025.103868_b47) 2013; 13
Kennedy (10.1016/j.advengsoft.2025.103868_b1) 1995
Eberhart (10.1016/j.advengsoft.2025.103868_b2) 1995
Cai (10.1016/j.advengsoft.2025.103868_b33) 2021; 106
Zhang (10.1016/j.advengsoft.2025.103868_b43) 2008; 178
Zhang (10.1016/j.advengsoft.2025.103868_b42) 2015; 42
Qin (10.1016/j.advengsoft.2025.103868_b7) 2015; 46
Parsopoulos (10.1016/j.advengsoft.2025.103868_b8) 2019
Guo (10.1016/j.advengsoft.2025.103868_b18) 2023; 11
Xia (10.1016/j.advengsoft.2025.103868_b16) 2019; 50
Aderyani (10.1016/j.advengsoft.2025.103868_b19) 2022; 614
Mendes (10.1016/j.advengsoft.2025.103868_b4) 2004; 8
He (10.1016/j.advengsoft.2025.103868_b50) 2007; 20
Liang (10.1016/j.advengsoft.2025.103868_b5) 2006; 10
Ji (10.1016/j.advengsoft.2025.103868_b13) 2012
Mühlenbein (10.1016/j.advengsoft.2025.103868_b28) 1996
Li (10.1016/j.advengsoft.2025.103868_b31) 2023
Liang (10.1016/j.advengsoft.2025.103868_b21) 2013
Kanwar (10.1016/j.advengsoft.2025.103868_b24) 2021; 27
Panagant (10.1016/j.advengsoft.2025.103868_b41) 2020; 62
Gad (10.1016/j.advengsoft.2025.103868_b27) 2022; 29
Nasir (10.1016/j.advengsoft.2025.103868_b12) 2012; 209
Brest (10.1016/j.advengsoft.2025.103868_b38) 2017
Zhang (10.1016/j.advengsoft.2025.103868_b10) 2023; 633
Masdari (10.1016/j.advengsoft.2025.103868_b25) 2017; 25
10.1016/j.advengsoft.2025.103868_b49
Xia (10.1016/j.advengsoft.2025.103868_b9) 2020; 508
Hu (10.1016/j.advengsoft.2025.103868_b30) 2020; 79
Luo (10.1016/j.advengsoft.2025.103868_b15) 2016; 47
Liu (10.1016/j.advengsoft.2025.103868_b11) 2011; 38
Biedrzycki (10.1016/j.advengsoft.2025.103868_b22) 2022
Li (10.1016/j.advengsoft.2025.103868_b20) 2022; 51
Hu (10.1016/j.advengsoft.2025.103868_b32) 2020; 8
Zhu (10.1016/j.advengsoft.2025.103868_b34) 2022; 158
Awad (10.1016/j.advengsoft.2025.103868_b39) 2017
Djemame (10.1016/j.advengsoft.2025.103868_b26) 2019; 23
Derrac (10.1016/j.advengsoft.2025.103868_b36) 2011; 1
Askarzadeh (10.1016/j.advengsoft.2025.103868_b44) 2016; 169
Xiang (10.1016/j.advengsoft.2025.103868_b29) 2022; 125
Chaitanya (10.1016/j.advengsoft.2025.103868_b17) 2021; 51
Li (10.1016/j.advengsoft.2025.103868_b14) 2015; 45
Li (10.1016/j.advengsoft.2025.103868_b3) 2015; 293
Wang (10.1016/j.advengsoft.2025.103868_b46) 2010; 41
Coello (10.1016/j.advengsoft.2025.103868_b48) 2002; 16
Xiang (10.1016/j.advengsoft.2025.103868_b35) 2023; 78
10.1016/j.advengsoft.2025.103868_b6
He (10.1016/j.advengsoft.2025.103868_b51) 2007; 186
Mohamed (10.1016/j.advengsoft.2025.103868_b40) 2017
Kumar (10.1016/j.advengsoft.2025.103868_b37) 2017
Qi (10.1016/j.advengsoft.2025.103868_b23) 2018; 159
References_xml – volume: 23
  start-page: 6921
  year: 2019
  end-page: 6935
  ident: b26
  article-title: Solving reverse emergence with quantum PSO application to image processing
  publication-title: Soft Comput
– volume: 50
  start-page: 4862
  year: 2019
  end-page: 4875
  ident: b16
  article-title: Triple archives particle swarm optimization
  publication-title: IEEE Trans Cybern
– reference: Zhan Zhi-Hui, Zhang Jun, Liu Ou. Orthogonal learning particle swarm optimization. In: Proceedings of the 11th annual conference on genetic and evolutionary computation. 2009, p. 1763–4.
– start-page: 178
  year: 1996
  end-page: 187
  ident: b28
  article-title: From recombination of genes to the estimation of distributions i. binary parameters
  publication-title: International conference on parallel problem solving from nature
– start-page: 1
  year: 2012
  end-page: 5
  ident: b13
  article-title: A memory binary particle swarm optimization
  publication-title: 2012 IEEE congress on evolutionary computation
– volume: 42
  start-page: 7831
  year: 2015
  end-page: 7845
  ident: b42
  article-title: Backtracking search algorithm with three constraint handling methods for constrained optimization problems
  publication-title: Expert Syst Appl
– volume: 10
  start-page: 281
  year: 2006
  end-page: 295
  ident: b5
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans Evol Comput
– volume: 20
  start-page: 89
  year: 2007
  end-page: 99
  ident: b50
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Eng Appl Artif Intell
– volume: 186
  start-page: 1407
  year: 2007
  end-page: 1422
  ident: b51
  article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization
  publication-title: Appl Math Comput
– volume: 38
  start-page: 4348
  year: 2011
  end-page: 4360
  ident: b11
  article-title: A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem
  publication-title: Expert Syst Appl
– start-page: 372
  year: 2017
  end-page: 379
  ident: b39
  article-title: Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving CEC2017 benchmark problems
  publication-title: 2017 IEEE congress on evolutionary computation
– volume: 47
  start-page: 130
  year: 2016
  end-page: 140
  ident: b15
  article-title: Species-based particle swarm optimizer enhanced by memory for dynamic optimization
  publication-title: Appl Soft Comput
– start-page: 39
  year: 1995
  end-page: 43
  ident: b2
  article-title: A new optimizer using particle swarm theory
  publication-title: MHS’95. proceedings of the sixth international symposium on micro machine and human science
– start-page: 868
  year: 2019
  end-page: 873
  ident: b8
  article-title: UPSO: A unified particle swarm optimization scheme
  publication-title: International conference of computational methods in sciences and engineering (ICCMSE 2004)
– volume: 16
  start-page: 193
  year: 2002
  end-page: 203
  ident: b48
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Adv Eng Inform
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: b47
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl Soft Comput
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b36
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol Comput
– start-page: 1
  year: 2022
  end-page: 8
  ident: b22
  article-title: A version of NL-SHADE-RSP algorithm with midpoint for CEC 2022 single objective bound constrained problems
  publication-title: 2022 IEEE congress on evolutionary computation
– volume: 125
  year: 2022
  ident: b29
  article-title: A simplified non-equidistant grey prediction evolution algorithm for global optimization
  publication-title: Appl Soft Comput
– volume: 178
  start-page: 3043
  year: 2008
  end-page: 3074
  ident: b43
  article-title: Differential evolution with dynamic stochastic selection for constrained optimization
  publication-title: Inform Sci
– volume: 11
  start-page: 31549
  year: 2023
  end-page: 31568
  ident: b18
  article-title: A bare-bones particle swarm optimization with crossed memory for global optimization
  publication-title: IEEE Access
– start-page: 1311
  year: 2017
  end-page: 1318
  ident: b38
  article-title: Single objective real-parameter optimization: Algorithm jSO
  publication-title: 2017 IEEE congress on evolutionary computation
– volume: 46
  start-page: 2238
  year: 2015
  end-page: 2251
  ident: b7
  article-title: Particle swarm optimization with interswarm interactive learning strategy
  publication-title: IEEE Trans Cybern
– volume: 45
  start-page: 2350
  year: 2015
  end-page: 2363
  ident: b14
  article-title: Composite particle swarm optimizer with historical memory for function optimization
  publication-title: IEEE Trans Cybern
– volume: 508
  start-page: 105
  year: 2020
  end-page: 120
  ident: b9
  article-title: An expanded particle swarm optimization based on multi-exemplar and forgetting ability
  publication-title: Inform Sci
– volume: 106
  year: 2021
  ident: b33
  article-title: Automated test case generation for path coverage by using grey prediction evolution algorithm with improved scatter search strategy
  publication-title: Eng Appl Artif Intell
– volume: 10
  start-page: 629
  year: 2010
  end-page: 640
  ident: b45
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl Soft Comput
– volume: 51
  start-page: 4575
  year: 2021
  end-page: 4608
  ident: b17
  article-title: Memory-based approaches for eliminating premature convergence in particle swarm optimization
  publication-title: Appl Intell
– volume: 41
  start-page: 947
  year: 2010
  end-page: 963
  ident: b46
  article-title: An effective differential evolution with level comparison for constrained engineering design
  publication-title: Struct Multidiscip Optim
– year: 2023
  ident: b31
  article-title: A grey prediction evolutionary algorithm with a surrogate model based on quadratic interpolation
  publication-title: Expert Syst Appl
– volume: 51
  year: 2022
  ident: b20
  article-title: Intelligent decision-making model in preventive maintenance of asphalt pavement based on PSO-GRU neural network
  publication-title: Adv Eng Inform
– start-page: 1835
  year: 2017
  end-page: 1842
  ident: b37
  article-title: Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase
  publication-title: 2017 IEEE congress on evolutionary computation
– volume: 29
  start-page: 2531
  year: 2022
  end-page: 2561
  ident: b27
  article-title: Particle swarm optimization algorithm and its applications: a systematic review
  publication-title: Arch Comput Methods Eng
– year: 2013
  ident: b21
  article-title: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b1
  article-title: Particle swarm optimization
– volume: 27
  start-page: 91
  year: 2021
  end-page: 102
  ident: b24
  article-title: DV-hop localization methods for displaced sensor nodes in wireless sensor network using PSO
  publication-title: Wirel Netw
– volume: 79
  start-page: 145
  year: 2020
  end-page: 160
  ident: b30
  article-title: Grey prediction evolution algorithm for global optimization
  publication-title: Appl Math Model
– volume: 78
  year: 2023
  ident: b35
  article-title: Non-equidistant grey prediction evolution algorithm: A mathematical model-based meta-heuristic technique
  publication-title: Swarm Evol Comput
– volume: 8
  start-page: 84162
  year: 2020
  end-page: 84176
  ident: b32
  article-title: Multiobjective grey prediction evolution algorithm for environmental/economic dispatch problem
  publication-title: IEEE Access
– volume: 293
  start-page: 370
  year: 2015
  end-page: 382
  ident: b3
  article-title: Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems
  publication-title: Inform Sci
– volume: 614
  year: 2022
  ident: b19
  article-title: Short-term rainfall forecasting using machine learning-based approaches of PSO-SVR, LSTM and CNN
  publication-title: J Hydrol
– volume: 159
  start-page: 473
  year: 2018
  end-page: 478
  ident: b23
  article-title: Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill
  publication-title: Constr Build Mater
– volume: 62
  start-page: 640
  year: 2020
  end-page: 644
  ident: b41
  article-title: Seagull optimization algorithm for solving real-world design optimization problems
  publication-title: Mater Test
– volume: 25
  start-page: 122
  year: 2017
  end-page: 158
  ident: b25
  article-title: A survey of PSO-based scheduling algorithms in cloud computing
  publication-title: J Netw Syst Manage
– volume: 8
  start-page: 204
  year: 2004
  end-page: 210
  ident: b4
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans Evol Comput
– volume: 158
  year: 2022
  ident: b34
  article-title: Lead-lag grey forecasting model in the new community group buying retailing
  publication-title: Chaos Solitons Fractals
– reference: Mezura-Montes Efrén, Coello CA Coello, Velázquez-Reyes Jesús. Increasing successful offspring and diversity in differential evolution for engineering design. In: Proceedings of the seventh international conference on adaptive computing in design and manufacture. ACDM 2006, 2006, p. 131–9.
– volume: 209
  start-page: 16
  year: 2012
  end-page: 36
  ident: b12
  article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization
  publication-title: Inform Sci
– start-page: 145
  year: 2017
  end-page: 152
  ident: b40
  article-title: LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems
  publication-title: 2017 IEEE congress on evolutionary computation
– volume: 633
  start-page: 321
  year: 2023
  end-page: 342
  ident: b10
  article-title: Heterogeneous cognitive learning particle swarm optimization for large-scale optimization problems
  publication-title: Inform Sci
– volume: 169
  start-page: 1
  year: 2016
  end-page: 12
  ident: b44
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm
  publication-title: Comput Struct
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.advengsoft.2025.103868_b36
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.02.002
– volume: 79
  start-page: 145
  year: 2020
  ident: 10.1016/j.advengsoft.2025.103868_b30
  article-title: Grey prediction evolution algorithm for global optimization
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2019.10.026
– volume: 62
  start-page: 640
  issue: 6
  year: 2020
  ident: 10.1016/j.advengsoft.2025.103868_b41
  article-title: Seagull optimization algorithm for solving real-world design optimization problems
  publication-title: Mater Test
  doi: 10.3139/120.111529
– volume: 178
  start-page: 3043
  issue: 15
  year: 2008
  ident: 10.1016/j.advengsoft.2025.103868_b43
  article-title: Differential evolution with dynamic stochastic selection for constrained optimization
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2008.02.014
– year: 2023
  ident: 10.1016/j.advengsoft.2025.103868_b31
  article-title: A grey prediction evolutionary algorithm with a surrogate model based on quadratic interpolation
  publication-title: Expert Syst Appl
– start-page: 178
  year: 1996
  ident: 10.1016/j.advengsoft.2025.103868_b28
  article-title: From recombination of genes to the estimation of distributions i. binary parameters
– volume: 27
  start-page: 91
  issue: 1
  year: 2021
  ident: 10.1016/j.advengsoft.2025.103868_b24
  article-title: DV-hop localization methods for displaced sensor nodes in wireless sensor network using PSO
  publication-title: Wirel Netw
  doi: 10.1007/s11276-020-02446-5
– volume: 25
  start-page: 122
  issue: 1
  year: 2017
  ident: 10.1016/j.advengsoft.2025.103868_b25
  article-title: A survey of PSO-based scheduling algorithms in cloud computing
  publication-title: J Netw Syst Manage
  doi: 10.1007/s10922-016-9385-9
– volume: 633
  start-page: 321
  year: 2023
  ident: 10.1016/j.advengsoft.2025.103868_b10
  article-title: Heterogeneous cognitive learning particle swarm optimization for large-scale optimization problems
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2023.03.086
– ident: 10.1016/j.advengsoft.2025.103868_b49
– start-page: 145
  year: 2017
  ident: 10.1016/j.advengsoft.2025.103868_b40
  article-title: LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems
– start-page: 1311
  year: 2017
  ident: 10.1016/j.advengsoft.2025.103868_b38
  article-title: Single objective real-parameter optimization: Algorithm jSO
– start-page: 1835
  year: 2017
  ident: 10.1016/j.advengsoft.2025.103868_b37
  article-title: Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase
– year: 2013
  ident: 10.1016/j.advengsoft.2025.103868_b21
– ident: 10.1016/j.advengsoft.2025.103868_b6
  doi: 10.1145/1569901.1570147
– volume: 16
  start-page: 193
  issue: 3
  year: 2002
  ident: 10.1016/j.advengsoft.2025.103868_b48
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Adv Eng Inform
  doi: 10.1016/S1474-0346(02)00011-3
– volume: 51
  year: 2022
  ident: 10.1016/j.advengsoft.2025.103868_b20
  article-title: Intelligent decision-making model in preventive maintenance of asphalt pavement based on PSO-GRU neural network
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101525
– volume: 293
  start-page: 370
  year: 2015
  ident: 10.1016/j.advengsoft.2025.103868_b3
  article-title: Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2014.09.030
– volume: 46
  start-page: 2238
  issue: 10
  year: 2015
  ident: 10.1016/j.advengsoft.2025.103868_b7
  article-title: Particle swarm optimization with interswarm interactive learning strategy
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2474153
– volume: 47
  start-page: 130
  year: 2016
  ident: 10.1016/j.advengsoft.2025.103868_b15
  article-title: Species-based particle swarm optimizer enhanced by memory for dynamic optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.05.032
– volume: 51
  start-page: 4575
  year: 2021
  ident: 10.1016/j.advengsoft.2025.103868_b17
  article-title: Memory-based approaches for eliminating premature convergence in particle swarm optimization
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-02045-z
– volume: 8
  start-page: 204
  issue: 3
  year: 2004
  ident: 10.1016/j.advengsoft.2025.103868_b4
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826074
– volume: 186
  start-page: 1407
  issue: 2
  year: 2007
  ident: 10.1016/j.advengsoft.2025.103868_b51
  article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization
  publication-title: Appl Math Comput
– volume: 614
  year: 2022
  ident: 10.1016/j.advengsoft.2025.103868_b19
  article-title: Short-term rainfall forecasting using machine learning-based approaches of PSO-SVR, LSTM and CNN
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.128463
– volume: 13
  start-page: 2592
  issue: 5
  year: 2013
  ident: 10.1016/j.advengsoft.2025.103868_b47
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.11.026
– volume: 159
  start-page: 473
  year: 2018
  ident: 10.1016/j.advengsoft.2025.103868_b23
  article-title: Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.11.006
– volume: 106
  year: 2021
  ident: 10.1016/j.advengsoft.2025.103868_b33
  article-title: Automated test case generation for path coverage by using grey prediction evolution algorithm with improved scatter search strategy
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104454
– volume: 23
  start-page: 6921
  issue: 16
  year: 2019
  ident: 10.1016/j.advengsoft.2025.103868_b26
  article-title: Solving reverse emergence with quantum PSO application to image processing
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3331-6
– volume: 41
  start-page: 947
  year: 2010
  ident: 10.1016/j.advengsoft.2025.103868_b46
  article-title: An effective differential evolution with level comparison for constrained engineering design
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-009-0454-5
– volume: 8
  start-page: 84162
  year: 2020
  ident: 10.1016/j.advengsoft.2025.103868_b32
  article-title: Multiobjective grey prediction evolution algorithm for environmental/economic dispatch problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992116
– volume: 169
  start-page: 1
  year: 2016
  ident: 10.1016/j.advengsoft.2025.103868_b44
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2016.03.001
– start-page: 1
  year: 2022
  ident: 10.1016/j.advengsoft.2025.103868_b22
  article-title: A version of NL-SHADE-RSP algorithm with midpoint for CEC 2022 single objective bound constrained problems
– start-page: 39
  year: 1995
  ident: 10.1016/j.advengsoft.2025.103868_b2
  article-title: A new optimizer using particle swarm theory
– volume: 10
  start-page: 629
  issue: 2
  year: 2010
  ident: 10.1016/j.advengsoft.2025.103868_b45
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.08.031
– start-page: 868
  year: 2019
  ident: 10.1016/j.advengsoft.2025.103868_b8
  article-title: UPSO: A unified particle swarm optimization scheme
– volume: 29
  start-page: 2531
  issue: 5
  year: 2022
  ident: 10.1016/j.advengsoft.2025.103868_b27
  article-title: Particle swarm optimization algorithm and its applications: a systematic review
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-021-09694-4
– volume: 158
  year: 2022
  ident: 10.1016/j.advengsoft.2025.103868_b34
  article-title: Lead-lag grey forecasting model in the new community group buying retailing
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.112024
– volume: 508
  start-page: 105
  year: 2020
  ident: 10.1016/j.advengsoft.2025.103868_b9
  article-title: An expanded particle swarm optimization based on multi-exemplar and forgetting ability
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2019.08.065
– volume: 45
  start-page: 2350
  issue: 10
  year: 2015
  ident: 10.1016/j.advengsoft.2025.103868_b14
  article-title: Composite particle swarm optimizer with historical memory for function optimization
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2424836
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 10.1016/j.advengsoft.2025.103868_b5
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.857610
– volume: 125
  year: 2022
  ident: 10.1016/j.advengsoft.2025.103868_b29
  article-title: A simplified non-equidistant grey prediction evolution algorithm for global optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109081
– volume: 42
  start-page: 7831
  issue: 21
  year: 2015
  ident: 10.1016/j.advengsoft.2025.103868_b42
  article-title: Backtracking search algorithm with three constraint handling methods for constrained optimization problems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.05.050
– volume: 11
  start-page: 31549
  year: 2023
  ident: 10.1016/j.advengsoft.2025.103868_b18
  article-title: A bare-bones particle swarm optimization with crossed memory for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3250228
– volume: 38
  start-page: 4348
  issue: 4
  year: 2011
  ident: 10.1016/j.advengsoft.2025.103868_b11
  article-title: A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.09.104
– volume: 209
  start-page: 16
  year: 2012
  ident: 10.1016/j.advengsoft.2025.103868_b12
  article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2012.04.028
– start-page: 1
  year: 2012
  ident: 10.1016/j.advengsoft.2025.103868_b13
  article-title: A memory binary particle swarm optimization
– volume: 50
  start-page: 4862
  issue: 12
  year: 2019
  ident: 10.1016/j.advengsoft.2025.103868_b16
  article-title: Triple archives particle swarm optimization
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2943928
– volume: 78
  year: 2023
  ident: 10.1016/j.advengsoft.2025.103868_b35
  article-title: Non-equidistant grey prediction evolution algorithm: A mathematical model-based meta-heuristic technique
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2023.101276
– start-page: 372
  year: 2017
  ident: 10.1016/j.advengsoft.2025.103868_b39
  article-title: Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving CEC2017 benchmark problems
– start-page: 1942
  year: 1995
  ident: 10.1016/j.advengsoft.2025.103868_b1
– volume: 20
  start-page: 89
  issue: 1
  year: 2007
  ident: 10.1016/j.advengsoft.2025.103868_b50
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2006.03.003
SSID ssj0014021
Score 2.426634
Snippet Particle swarm optimization (PSO) and its numerous performance-enhancing variants are a kind of stochastic optimization technique based on collaborative...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103868
SubjectTerms Future information
Improved particle swarm optimization algorithm
Non-equidistant grey prediction evolutionary algorithm
Particle swarm optimization algorithm
Title A composite particle swarm optimization algorithm with future information inspired by non-equidistant grey predictive evolution for global optimization problems and engineering problems
URI https://dx.doi.org/10.1016/j.advengsoft.2025.103868
Volume 202
WOSCitedRecordID wos001420573300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0965-9978
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0014021
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMceBQQ5aU5cLNcJU78WHGKUFHpoUIQRG7WenedOkrskFfbn8Z_4Ecx-7LdUokihBRZ0di7a2s-e2dmv50h5G0SUjrMM-5zwXJ_yFnkU4Zea6IoVXGS8_4g08Um4tPTZDKhnzqdn24vzG4el2VycUGX_1XVKENlq62zf6HuulMU4H9UOh5R7Xi8leJHmiauuFjSW9rz3vqcrRZehd-Hhd146bH5tFoVm7OFicWa5CKeTaRqKZBqGd6YqGVV-vL7thDK3iw3HrrplyrBgCj0B9OTO_tQmrdo04xcGc-WrjE5oWWTBrE-0baTR4aaoMm67WvXOGucK7Kayi9FadAKZBwzHfX9vC0aqOqll7OqnGaVE04KS0L-Jssxq8UnhQucn7FqVsh2NCQIWyQaHaJz23QaTpSOdUahT6mpFeQ--4He6f37FGKiGbNDJnC2marHOlQD6UzypgLQtQTdX1T3qvcgNLP_HbIXxCjpkr3Rx6PJSb2qhb66ruDobscyywzf8ObxbjaXWibQ-BF5YH0XGBlMPSYdWe6Th9aPATtLrFHkSoU42T6538p7-YT8GEGNUXAYBY1RaGMGaoyCwigYjEILo-AwCtklXMMoKIxCg1GoMQrYHgxGr47noAiIUWjhrj7xlHz9cDR-f-zbGiI-x9lq44eRDEV_GGc9EcVZjr-sJ_MsTERGhQgjHiV5wCjv0Vxk_SiP0SFhLJc8GqIpLgeDZ6SLdy-fE0BHH-V8gNepun19FjKacDTAcyk4l_yAxE5VKbcJ9lWdl3nqmJSztFFyqpScGiUfkH7dcmmSzNyizTuHhtQay8YIThHIf2z94p9avyT3mnfvFeluVlv5mtzlu02xXr2xqP8FUkH7mg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+composite+particle+swarm+optimization+algorithm+with+future+information+inspired+by+non-equidistant+grey+predictive+evolution+for+global+optimization+problems+and+engineering+problems&rft.jtitle=Advances+in+engineering+software+%281992%29&rft.au=Hao%2C+Rui&rft.au=Hu%2C+Zhongbo&rft.au=Xiong%2C+WenTao&rft.au=Jiang%2C+Shaojie&rft.date=2025-04-01&rft.pub=Elsevier+Ltd&rft.issn=0965-9978&rft.volume=202&rft_id=info:doi/10.1016%2Fj.advengsoft.2025.103868&rft.externalDocID=S0965997825000067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-9978&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-9978&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-9978&client=summon