A composite particle swarm optimization algorithm with future information inspired by non-equidistant grey predictive evolution for global optimization problems and engineering problems
Particle swarm optimization (PSO) and its numerous performance-enhancing variants are a kind of stochastic optimization technique based on collaborative sharing of swarm information. Many variants took current particles and historical particles as current and historical information to improve their...
Uložené v:
| Vydané v: | Advances in engineering software (1992) Ročník 202; s. 103868 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.04.2025
|
| Predmet: | |
| ISSN: | 0965-9978 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Particle swarm optimization (PSO) and its numerous performance-enhancing variants are a kind of stochastic optimization technique based on collaborative sharing of swarm information. Many variants took current particles and historical particles as current and historical information to improve their performance. If future information after each current swarm can be mined to participate in collaborative search, the algorithmic performance could benefit from the comprehensiveness of the information including historical, current and future information. This paper proposes a composite particle swarm optimization algorithm with future information inspired by non-equidistant grey predictive evolution, namely NeGPPSO. The proposed algorithm firstly employs non-equidistant grey predictive evolution algorithm to predict a future particle as future information for each particle of a current swarm. Secondly, four particles including prediction particle, particle best and swarm best of the current swarm, and a history memory particle are used as guide particles to generate four candidate positions. Finally, the best one in the four positions is greedily selected as an offspring particle. Numerical experiments are conducted on 42 benchmark functions given by the Congress on Evolutionary Computation 2014/2022 and 3 engineering problems. The experimental results demonstrate the overall advantages of the proposed NeGPPSO over several state-of-art algorithms.
•Integrate future information for the first time to improve PSO algorithm.•Present a composite particle swarm optimization with future information.•Apply NeGPE’s predictive ability to predict future information for particles.•The proposed algorithm outperforms the state-of-the-art on several test suites.•The proposed algorithm surpasses the comparative algorithms in engineering problems. |
|---|---|
| AbstractList | Particle swarm optimization (PSO) and its numerous performance-enhancing variants are a kind of stochastic optimization technique based on collaborative sharing of swarm information. Many variants took current particles and historical particles as current and historical information to improve their performance. If future information after each current swarm can be mined to participate in collaborative search, the algorithmic performance could benefit from the comprehensiveness of the information including historical, current and future information. This paper proposes a composite particle swarm optimization algorithm with future information inspired by non-equidistant grey predictive evolution, namely NeGPPSO. The proposed algorithm firstly employs non-equidistant grey predictive evolution algorithm to predict a future particle as future information for each particle of a current swarm. Secondly, four particles including prediction particle, particle best and swarm best of the current swarm, and a history memory particle are used as guide particles to generate four candidate positions. Finally, the best one in the four positions is greedily selected as an offspring particle. Numerical experiments are conducted on 42 benchmark functions given by the Congress on Evolutionary Computation 2014/2022 and 3 engineering problems. The experimental results demonstrate the overall advantages of the proposed NeGPPSO over several state-of-art algorithms.
•Integrate future information for the first time to improve PSO algorithm.•Present a composite particle swarm optimization with future information.•Apply NeGPE’s predictive ability to predict future information for particles.•The proposed algorithm outperforms the state-of-the-art on several test suites.•The proposed algorithm surpasses the comparative algorithms in engineering problems. |
| ArticleNumber | 103868 |
| Author | Hu, Zhongbo Hao, Rui Xiong, WenTao Jiang, Shaojie |
| Author_xml | – sequence: 1 givenname: Rui surname: Hao fullname: Hao, Rui email: 2022710192@yangtzeu.edu.cn organization: School of Information and Mathematics, Yangtze University, Jingzhou, Hubei, China – sequence: 2 givenname: Zhongbo orcidid: 0000-0002-3685-2753 surname: Hu fullname: Hu, Zhongbo email: huzbdd@126.com organization: School of Information and Mathematics, Yangtze University, Jingzhou, Hubei, China – sequence: 3 givenname: WenTao surname: Xiong fullname: Xiong, WenTao email: xiong2017@hbeu.edu.cn organization: School of Mathematics and Statistics, Hubei Engineering University, Xiaogan, Hubei, China – sequence: 4 givenname: Shaojie surname: Jiang fullname: Jiang, Shaojie email: shaojie223@yangtzeu.edu.cn organization: Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China |
| BookMark | eNqNkN1u1DAQhX1RJNrCO8wLZLGTjTe5QSoVP5UqcQPXln_GYVaJHWzvVsub8Xa4XQSCG5BGHsnjczznu2IXIQZkDATfCC7kq_1GuyOGKUdfNi1v-3rdDXK4YJd8lH0zjrvhObvKec-52PJWXLLvN2DjssZMBWHVqZCdEfKDTgvEtdBC33ShGEDPU0xUvizwUE_wh3JICBR8TMv5BYW8UkIH5gR1sQa_HshRLjoUmBKeYK1DsoWOCHiM8-FJVfUwzdHo-c__1hTNjEsGHRzUTBQQE4Xp1-AFe-b1nPHlz37NPr97--n2Q3P_8f3d7c19YzsxlKaX2Dux3Rnu5M74WoajN_3gzOhcL60cfKtHy0fvjJB-1_Wt1h6t3Mqux667Zq_PvjbFnBN6Zak87ViSplkJrh7hq736DV89wldn-NVg-MtgTbTodPof6ZuzFGvAI2FS2RIGWzkmtEW5SP82-QH6LbNx |
| CitedBy_id | crossref_primary_10_3390_math13071114 crossref_primary_10_3390_buildings15132236 |
| Cites_doi | 10.1016/j.swevo.2011.02.002 10.1016/j.apm.2019.10.026 10.3139/120.111529 10.1016/j.ins.2008.02.014 10.1007/s11276-020-02446-5 10.1007/s10922-016-9385-9 10.1016/j.ins.2023.03.086 10.1145/1569901.1570147 10.1016/S1474-0346(02)00011-3 10.1016/j.aei.2022.101525 10.1016/j.ins.2014.09.030 10.1109/TCYB.2015.2474153 10.1016/j.asoc.2016.05.032 10.1007/s10489-020-02045-z 10.1109/TEVC.2004.826074 10.1016/j.jhydrol.2022.128463 10.1016/j.asoc.2012.11.026 10.1016/j.conbuildmat.2017.11.006 10.1016/j.engappai.2021.104454 10.1007/s00500-018-3331-6 10.1007/s00158-009-0454-5 10.1109/ACCESS.2020.2992116 10.1016/j.compstruc.2016.03.001 10.1016/j.asoc.2009.08.031 10.1007/s11831-021-09694-4 10.1016/j.chaos.2022.112024 10.1016/j.ins.2019.08.065 10.1109/TCYB.2015.2424836 10.1109/TEVC.2005.857610 10.1016/j.asoc.2022.109081 10.1016/j.eswa.2015.05.050 10.1109/ACCESS.2023.3250228 10.1016/j.eswa.2010.09.104 10.1016/j.ins.2012.04.028 10.1109/TCYB.2019.2943928 10.1016/j.swevo.2023.101276 10.1016/j.engappai.2006.03.003 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.advengsoft.2025.103868 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| ExternalDocumentID | 10_1016_j_advengsoft_2025_103868 S0965997825000067 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- 9DU AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c318t-56e5d147b0d67bf7bfb0efb58db9dd56c68f2a9c09fdb16f7352aafec64635e33 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001420573300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0965-9978 |
| IngestDate | Sat Nov 29 08:19:26 EST 2025 Tue Nov 18 22:10:47 EST 2025 Sat Mar 01 15:46:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Future information Improved particle swarm optimization algorithm Non-equidistant grey prediction evolutionary algorithm Particle swarm optimization algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c318t-56e5d147b0d67bf7bfb0efb58db9dd56c68f2a9c09fdb16f7352aafec64635e33 |
| ORCID | 0000-0002-3685-2753 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_advengsoft_2025_103868 crossref_primary_10_1016_j_advengsoft_2025_103868 elsevier_sciencedirect_doi_10_1016_j_advengsoft_2025_103868 |
| PublicationCentury | 2000 |
| PublicationDate | April 2025 2025-04-00 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Advances in engineering software (1992) |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Xiang, Su, Huang, Hu (b29) 2022; 125 Biedrzycki, Arabas, Warchulski (b22) 2022 Awad, Ali, Suganthan (b39) 2017 Zhang, Lin, Gao, Li (b42) 2015; 42 Liu, Cai, Wang (b45) 2010; 10 Li, Zhang, Wang, Yan (b20) 2022; 51 He, Wang (b51) 2007; 186 Wang, Li (b46) 2010; 41 Qi, Fourie, Chen (b23) 2018; 159 Masdari, Salehi, Jalali, Bidaki (b25) 2017; 25 Li, Su, Hu (b31) 2023 He, Wang (b50) 2007; 20 Coello, Montes (b48) 2002; 16 Ji, Tian, He, Zhu (b13) 2012 Djemame, Batouche, Oulhadj, Siarry (b26) 2019; 23 Brest, Maučec, Bošković (b38) 2017 Zhu, Xiao, Kang, Kong (b34) 2022; 158 Liang, Qu, Suganthan (b21) 2013 Mohamed, Hadi, Fattouh, Jambi (b40) 2017 Xiang, Su, Hu (b35) 2023; 78 Sadollah, Bahreininejad, Eskandar, Hamdi (b47) 2013; 13 Guo, Zhou, Di, Shi, Yan, Sato (b18) 2023; 11 Liang, Qin, Suganthan, Baskar (b5) 2006; 10 Nasir, Das, Maity, Sengupta, Halder, Suganthan (b12) 2012; 209 Zhang, Nie, Yang, Wang, Liu, Jeon, Zhang (b10) 2023; 633 Chaitanya, Somayajulu, Krishna (b17) 2021; 51 Li, Zhang, Jiang, Zhou (b14) 2015; 45 Aderyani, Mousavi, Jafari (b19) 2022; 614 Zhan Zhi-Hui, Zhang Jun, Liu Ou. Orthogonal learning particle swarm optimization. In: Proceedings of the 11th annual conference on genetic and evolutionary computation. 2009, p. 1763–4. Hu, Xu, Su, Zhu, Guo (b30) 2020; 79 Mühlenbein, Paass (b28) 1996 Kanwar, Kumar (b24) 2021; 27 Xia, Gui, Yu, Wu, Wei, Zhang, Zhan (b16) 2019; 50 Askarzadeh (b44) 2016; 169 Gad (b27) 2022; 29 Cai, Su, Hu (b33) 2021; 106 Parsopoulos, Vrahatis (b8) 2019 Zhang, Luo, Wang (b43) 2008; 178 Qin, Cheng, Zhang, Li, Shi (b7) 2015; 46 Derrac, García, Molina, Herrera (b36) 2011; 1 Kennedy, Eberhart (b1) 1995 Mezura-Montes Efrén, Coello CA Coello, Velázquez-Reyes Jesús. Increasing successful offspring and diversity in differential evolution for engineering design. In: Proceedings of the seventh international conference on adaptive computing in design and manufacture. ACDM 2006, 2006, p. 131–9. Hu, Li, Dai, Xu, Xiong, Su (b32) 2020; 8 Luo, Sun, Bu, Liang (b15) 2016; 47 Kumar, Misra, Singh (b37) 2017 Mendes, Kennedy, Neves (b4) 2004; 8 Li, Zhan, Lin, Zhang, Luo (b3) 2015; 293 Xia, Gui, He, Wei, Zhang, Yu, Wu, Zhan (b9) 2020; 508 Eberhart, Kennedy (b2) 1995 Liu, Gao, Pan (b11) 2011; 38 Panagant, Pholdee, Bureerat, Kaen, Yıldız, Sait (b41) 2020; 62 Liu (10.1016/j.advengsoft.2025.103868_b45) 2010; 10 Sadollah (10.1016/j.advengsoft.2025.103868_b47) 2013; 13 Kennedy (10.1016/j.advengsoft.2025.103868_b1) 1995 Eberhart (10.1016/j.advengsoft.2025.103868_b2) 1995 Cai (10.1016/j.advengsoft.2025.103868_b33) 2021; 106 Zhang (10.1016/j.advengsoft.2025.103868_b43) 2008; 178 Zhang (10.1016/j.advengsoft.2025.103868_b42) 2015; 42 Qin (10.1016/j.advengsoft.2025.103868_b7) 2015; 46 Parsopoulos (10.1016/j.advengsoft.2025.103868_b8) 2019 Guo (10.1016/j.advengsoft.2025.103868_b18) 2023; 11 Xia (10.1016/j.advengsoft.2025.103868_b16) 2019; 50 Aderyani (10.1016/j.advengsoft.2025.103868_b19) 2022; 614 Mendes (10.1016/j.advengsoft.2025.103868_b4) 2004; 8 He (10.1016/j.advengsoft.2025.103868_b50) 2007; 20 Liang (10.1016/j.advengsoft.2025.103868_b5) 2006; 10 Ji (10.1016/j.advengsoft.2025.103868_b13) 2012 Mühlenbein (10.1016/j.advengsoft.2025.103868_b28) 1996 Li (10.1016/j.advengsoft.2025.103868_b31) 2023 Liang (10.1016/j.advengsoft.2025.103868_b21) 2013 Kanwar (10.1016/j.advengsoft.2025.103868_b24) 2021; 27 Panagant (10.1016/j.advengsoft.2025.103868_b41) 2020; 62 Gad (10.1016/j.advengsoft.2025.103868_b27) 2022; 29 Nasir (10.1016/j.advengsoft.2025.103868_b12) 2012; 209 Brest (10.1016/j.advengsoft.2025.103868_b38) 2017 Zhang (10.1016/j.advengsoft.2025.103868_b10) 2023; 633 Masdari (10.1016/j.advengsoft.2025.103868_b25) 2017; 25 10.1016/j.advengsoft.2025.103868_b49 Xia (10.1016/j.advengsoft.2025.103868_b9) 2020; 508 Hu (10.1016/j.advengsoft.2025.103868_b30) 2020; 79 Luo (10.1016/j.advengsoft.2025.103868_b15) 2016; 47 Liu (10.1016/j.advengsoft.2025.103868_b11) 2011; 38 Biedrzycki (10.1016/j.advengsoft.2025.103868_b22) 2022 Li (10.1016/j.advengsoft.2025.103868_b20) 2022; 51 Hu (10.1016/j.advengsoft.2025.103868_b32) 2020; 8 Zhu (10.1016/j.advengsoft.2025.103868_b34) 2022; 158 Awad (10.1016/j.advengsoft.2025.103868_b39) 2017 Djemame (10.1016/j.advengsoft.2025.103868_b26) 2019; 23 Derrac (10.1016/j.advengsoft.2025.103868_b36) 2011; 1 Askarzadeh (10.1016/j.advengsoft.2025.103868_b44) 2016; 169 Xiang (10.1016/j.advengsoft.2025.103868_b29) 2022; 125 Chaitanya (10.1016/j.advengsoft.2025.103868_b17) 2021; 51 Li (10.1016/j.advengsoft.2025.103868_b14) 2015; 45 Li (10.1016/j.advengsoft.2025.103868_b3) 2015; 293 Wang (10.1016/j.advengsoft.2025.103868_b46) 2010; 41 Coello (10.1016/j.advengsoft.2025.103868_b48) 2002; 16 Xiang (10.1016/j.advengsoft.2025.103868_b35) 2023; 78 10.1016/j.advengsoft.2025.103868_b6 He (10.1016/j.advengsoft.2025.103868_b51) 2007; 186 Mohamed (10.1016/j.advengsoft.2025.103868_b40) 2017 Kumar (10.1016/j.advengsoft.2025.103868_b37) 2017 Qi (10.1016/j.advengsoft.2025.103868_b23) 2018; 159 |
| References_xml | – volume: 23 start-page: 6921 year: 2019 end-page: 6935 ident: b26 article-title: Solving reverse emergence with quantum PSO application to image processing publication-title: Soft Comput – volume: 50 start-page: 4862 year: 2019 end-page: 4875 ident: b16 article-title: Triple archives particle swarm optimization publication-title: IEEE Trans Cybern – reference: Zhan Zhi-Hui, Zhang Jun, Liu Ou. Orthogonal learning particle swarm optimization. In: Proceedings of the 11th annual conference on genetic and evolutionary computation. 2009, p. 1763–4. – start-page: 178 year: 1996 end-page: 187 ident: b28 article-title: From recombination of genes to the estimation of distributions i. binary parameters publication-title: International conference on parallel problem solving from nature – start-page: 1 year: 2012 end-page: 5 ident: b13 article-title: A memory binary particle swarm optimization publication-title: 2012 IEEE congress on evolutionary computation – volume: 42 start-page: 7831 year: 2015 end-page: 7845 ident: b42 article-title: Backtracking search algorithm with three constraint handling methods for constrained optimization problems publication-title: Expert Syst Appl – volume: 10 start-page: 281 year: 2006 end-page: 295 ident: b5 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans Evol Comput – volume: 20 start-page: 89 year: 2007 end-page: 99 ident: b50 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Eng Appl Artif Intell – volume: 186 start-page: 1407 year: 2007 end-page: 1422 ident: b51 article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization publication-title: Appl Math Comput – volume: 38 start-page: 4348 year: 2011 end-page: 4360 ident: b11 article-title: A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem publication-title: Expert Syst Appl – start-page: 372 year: 2017 end-page: 379 ident: b39 article-title: Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving CEC2017 benchmark problems publication-title: 2017 IEEE congress on evolutionary computation – volume: 47 start-page: 130 year: 2016 end-page: 140 ident: b15 article-title: Species-based particle swarm optimizer enhanced by memory for dynamic optimization publication-title: Appl Soft Comput – start-page: 39 year: 1995 end-page: 43 ident: b2 article-title: A new optimizer using particle swarm theory publication-title: MHS’95. proceedings of the sixth international symposium on micro machine and human science – start-page: 868 year: 2019 end-page: 873 ident: b8 article-title: UPSO: A unified particle swarm optimization scheme publication-title: International conference of computational methods in sciences and engineering (ICCMSE 2004) – volume: 16 start-page: 193 year: 2002 end-page: 203 ident: b48 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Adv Eng Inform – volume: 13 start-page: 2592 year: 2013 end-page: 2612 ident: b47 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl Soft Comput – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b36 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol Comput – start-page: 1 year: 2022 end-page: 8 ident: b22 article-title: A version of NL-SHADE-RSP algorithm with midpoint for CEC 2022 single objective bound constrained problems publication-title: 2022 IEEE congress on evolutionary computation – volume: 125 year: 2022 ident: b29 article-title: A simplified non-equidistant grey prediction evolution algorithm for global optimization publication-title: Appl Soft Comput – volume: 178 start-page: 3043 year: 2008 end-page: 3074 ident: b43 article-title: Differential evolution with dynamic stochastic selection for constrained optimization publication-title: Inform Sci – volume: 11 start-page: 31549 year: 2023 end-page: 31568 ident: b18 article-title: A bare-bones particle swarm optimization with crossed memory for global optimization publication-title: IEEE Access – start-page: 1311 year: 2017 end-page: 1318 ident: b38 article-title: Single objective real-parameter optimization: Algorithm jSO publication-title: 2017 IEEE congress on evolutionary computation – volume: 46 start-page: 2238 year: 2015 end-page: 2251 ident: b7 article-title: Particle swarm optimization with interswarm interactive learning strategy publication-title: IEEE Trans Cybern – volume: 45 start-page: 2350 year: 2015 end-page: 2363 ident: b14 article-title: Composite particle swarm optimizer with historical memory for function optimization publication-title: IEEE Trans Cybern – volume: 508 start-page: 105 year: 2020 end-page: 120 ident: b9 article-title: An expanded particle swarm optimization based on multi-exemplar and forgetting ability publication-title: Inform Sci – volume: 106 year: 2021 ident: b33 article-title: Automated test case generation for path coverage by using grey prediction evolution algorithm with improved scatter search strategy publication-title: Eng Appl Artif Intell – volume: 10 start-page: 629 year: 2010 end-page: 640 ident: b45 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Appl Soft Comput – volume: 51 start-page: 4575 year: 2021 end-page: 4608 ident: b17 article-title: Memory-based approaches for eliminating premature convergence in particle swarm optimization publication-title: Appl Intell – volume: 41 start-page: 947 year: 2010 end-page: 963 ident: b46 article-title: An effective differential evolution with level comparison for constrained engineering design publication-title: Struct Multidiscip Optim – year: 2023 ident: b31 article-title: A grey prediction evolutionary algorithm with a surrogate model based on quadratic interpolation publication-title: Expert Syst Appl – volume: 51 year: 2022 ident: b20 article-title: Intelligent decision-making model in preventive maintenance of asphalt pavement based on PSO-GRU neural network publication-title: Adv Eng Inform – start-page: 1835 year: 2017 end-page: 1842 ident: b37 article-title: Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase publication-title: 2017 IEEE congress on evolutionary computation – volume: 29 start-page: 2531 year: 2022 end-page: 2561 ident: b27 article-title: Particle swarm optimization algorithm and its applications: a systematic review publication-title: Arch Comput Methods Eng – year: 2013 ident: b21 article-title: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization – start-page: 1942 year: 1995 end-page: 1948 ident: b1 article-title: Particle swarm optimization – volume: 27 start-page: 91 year: 2021 end-page: 102 ident: b24 article-title: DV-hop localization methods for displaced sensor nodes in wireless sensor network using PSO publication-title: Wirel Netw – volume: 79 start-page: 145 year: 2020 end-page: 160 ident: b30 article-title: Grey prediction evolution algorithm for global optimization publication-title: Appl Math Model – volume: 78 year: 2023 ident: b35 article-title: Non-equidistant grey prediction evolution algorithm: A mathematical model-based meta-heuristic technique publication-title: Swarm Evol Comput – volume: 8 start-page: 84162 year: 2020 end-page: 84176 ident: b32 article-title: Multiobjective grey prediction evolution algorithm for environmental/economic dispatch problem publication-title: IEEE Access – volume: 293 start-page: 370 year: 2015 end-page: 382 ident: b3 article-title: Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems publication-title: Inform Sci – volume: 614 year: 2022 ident: b19 article-title: Short-term rainfall forecasting using machine learning-based approaches of PSO-SVR, LSTM and CNN publication-title: J Hydrol – volume: 159 start-page: 473 year: 2018 end-page: 478 ident: b23 article-title: Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill publication-title: Constr Build Mater – volume: 62 start-page: 640 year: 2020 end-page: 644 ident: b41 article-title: Seagull optimization algorithm for solving real-world design optimization problems publication-title: Mater Test – volume: 25 start-page: 122 year: 2017 end-page: 158 ident: b25 article-title: A survey of PSO-based scheduling algorithms in cloud computing publication-title: J Netw Syst Manage – volume: 8 start-page: 204 year: 2004 end-page: 210 ident: b4 article-title: The fully informed particle swarm: simpler, maybe better publication-title: IEEE Trans Evol Comput – volume: 158 year: 2022 ident: b34 article-title: Lead-lag grey forecasting model in the new community group buying retailing publication-title: Chaos Solitons Fractals – reference: Mezura-Montes Efrén, Coello CA Coello, Velázquez-Reyes Jesús. Increasing successful offspring and diversity in differential evolution for engineering design. In: Proceedings of the seventh international conference on adaptive computing in design and manufacture. ACDM 2006, 2006, p. 131–9. – volume: 209 start-page: 16 year: 2012 end-page: 36 ident: b12 article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization publication-title: Inform Sci – start-page: 145 year: 2017 end-page: 152 ident: b40 article-title: LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems publication-title: 2017 IEEE congress on evolutionary computation – volume: 633 start-page: 321 year: 2023 end-page: 342 ident: b10 article-title: Heterogeneous cognitive learning particle swarm optimization for large-scale optimization problems publication-title: Inform Sci – volume: 169 start-page: 1 year: 2016 end-page: 12 ident: b44 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm publication-title: Comput Struct – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.advengsoft.2025.103868_b36 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.02.002 – volume: 79 start-page: 145 year: 2020 ident: 10.1016/j.advengsoft.2025.103868_b30 article-title: Grey prediction evolution algorithm for global optimization publication-title: Appl Math Model doi: 10.1016/j.apm.2019.10.026 – volume: 62 start-page: 640 issue: 6 year: 2020 ident: 10.1016/j.advengsoft.2025.103868_b41 article-title: Seagull optimization algorithm for solving real-world design optimization problems publication-title: Mater Test doi: 10.3139/120.111529 – volume: 178 start-page: 3043 issue: 15 year: 2008 ident: 10.1016/j.advengsoft.2025.103868_b43 article-title: Differential evolution with dynamic stochastic selection for constrained optimization publication-title: Inform Sci doi: 10.1016/j.ins.2008.02.014 – year: 2023 ident: 10.1016/j.advengsoft.2025.103868_b31 article-title: A grey prediction evolutionary algorithm with a surrogate model based on quadratic interpolation publication-title: Expert Syst Appl – start-page: 178 year: 1996 ident: 10.1016/j.advengsoft.2025.103868_b28 article-title: From recombination of genes to the estimation of distributions i. binary parameters – volume: 27 start-page: 91 issue: 1 year: 2021 ident: 10.1016/j.advengsoft.2025.103868_b24 article-title: DV-hop localization methods for displaced sensor nodes in wireless sensor network using PSO publication-title: Wirel Netw doi: 10.1007/s11276-020-02446-5 – volume: 25 start-page: 122 issue: 1 year: 2017 ident: 10.1016/j.advengsoft.2025.103868_b25 article-title: A survey of PSO-based scheduling algorithms in cloud computing publication-title: J Netw Syst Manage doi: 10.1007/s10922-016-9385-9 – volume: 633 start-page: 321 year: 2023 ident: 10.1016/j.advengsoft.2025.103868_b10 article-title: Heterogeneous cognitive learning particle swarm optimization for large-scale optimization problems publication-title: Inform Sci doi: 10.1016/j.ins.2023.03.086 – ident: 10.1016/j.advengsoft.2025.103868_b49 – start-page: 145 year: 2017 ident: 10.1016/j.advengsoft.2025.103868_b40 article-title: LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems – start-page: 1311 year: 2017 ident: 10.1016/j.advengsoft.2025.103868_b38 article-title: Single objective real-parameter optimization: Algorithm jSO – start-page: 1835 year: 2017 ident: 10.1016/j.advengsoft.2025.103868_b37 article-title: Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase – year: 2013 ident: 10.1016/j.advengsoft.2025.103868_b21 – ident: 10.1016/j.advengsoft.2025.103868_b6 doi: 10.1145/1569901.1570147 – volume: 16 start-page: 193 issue: 3 year: 2002 ident: 10.1016/j.advengsoft.2025.103868_b48 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Adv Eng Inform doi: 10.1016/S1474-0346(02)00011-3 – volume: 51 year: 2022 ident: 10.1016/j.advengsoft.2025.103868_b20 article-title: Intelligent decision-making model in preventive maintenance of asphalt pavement based on PSO-GRU neural network publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101525 – volume: 293 start-page: 370 year: 2015 ident: 10.1016/j.advengsoft.2025.103868_b3 article-title: Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems publication-title: Inform Sci doi: 10.1016/j.ins.2014.09.030 – volume: 46 start-page: 2238 issue: 10 year: 2015 ident: 10.1016/j.advengsoft.2025.103868_b7 article-title: Particle swarm optimization with interswarm interactive learning strategy publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2015.2474153 – volume: 47 start-page: 130 year: 2016 ident: 10.1016/j.advengsoft.2025.103868_b15 article-title: Species-based particle swarm optimizer enhanced by memory for dynamic optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.05.032 – volume: 51 start-page: 4575 year: 2021 ident: 10.1016/j.advengsoft.2025.103868_b17 article-title: Memory-based approaches for eliminating premature convergence in particle swarm optimization publication-title: Appl Intell doi: 10.1007/s10489-020-02045-z – volume: 8 start-page: 204 issue: 3 year: 2004 ident: 10.1016/j.advengsoft.2025.103868_b4 article-title: The fully informed particle swarm: simpler, maybe better publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2004.826074 – volume: 186 start-page: 1407 issue: 2 year: 2007 ident: 10.1016/j.advengsoft.2025.103868_b51 article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization publication-title: Appl Math Comput – volume: 614 year: 2022 ident: 10.1016/j.advengsoft.2025.103868_b19 article-title: Short-term rainfall forecasting using machine learning-based approaches of PSO-SVR, LSTM and CNN publication-title: J Hydrol doi: 10.1016/j.jhydrol.2022.128463 – volume: 13 start-page: 2592 issue: 5 year: 2013 ident: 10.1016/j.advengsoft.2025.103868_b47 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.11.026 – volume: 159 start-page: 473 year: 2018 ident: 10.1016/j.advengsoft.2025.103868_b23 article-title: Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.11.006 – volume: 106 year: 2021 ident: 10.1016/j.advengsoft.2025.103868_b33 article-title: Automated test case generation for path coverage by using grey prediction evolution algorithm with improved scatter search strategy publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104454 – volume: 23 start-page: 6921 issue: 16 year: 2019 ident: 10.1016/j.advengsoft.2025.103868_b26 article-title: Solving reverse emergence with quantum PSO application to image processing publication-title: Soft Comput doi: 10.1007/s00500-018-3331-6 – volume: 41 start-page: 947 year: 2010 ident: 10.1016/j.advengsoft.2025.103868_b46 article-title: An effective differential evolution with level comparison for constrained engineering design publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-009-0454-5 – volume: 8 start-page: 84162 year: 2020 ident: 10.1016/j.advengsoft.2025.103868_b32 article-title: Multiobjective grey prediction evolution algorithm for environmental/economic dispatch problem publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992116 – volume: 169 start-page: 1 year: 2016 ident: 10.1016/j.advengsoft.2025.103868_b44 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm publication-title: Comput Struct doi: 10.1016/j.compstruc.2016.03.001 – start-page: 1 year: 2022 ident: 10.1016/j.advengsoft.2025.103868_b22 article-title: A version of NL-SHADE-RSP algorithm with midpoint for CEC 2022 single objective bound constrained problems – start-page: 39 year: 1995 ident: 10.1016/j.advengsoft.2025.103868_b2 article-title: A new optimizer using particle swarm theory – volume: 10 start-page: 629 issue: 2 year: 2010 ident: 10.1016/j.advengsoft.2025.103868_b45 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.08.031 – start-page: 868 year: 2019 ident: 10.1016/j.advengsoft.2025.103868_b8 article-title: UPSO: A unified particle swarm optimization scheme – volume: 29 start-page: 2531 issue: 5 year: 2022 ident: 10.1016/j.advengsoft.2025.103868_b27 article-title: Particle swarm optimization algorithm and its applications: a systematic review publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-021-09694-4 – volume: 158 year: 2022 ident: 10.1016/j.advengsoft.2025.103868_b34 article-title: Lead-lag grey forecasting model in the new community group buying retailing publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2022.112024 – volume: 508 start-page: 105 year: 2020 ident: 10.1016/j.advengsoft.2025.103868_b9 article-title: An expanded particle swarm optimization based on multi-exemplar and forgetting ability publication-title: Inform Sci doi: 10.1016/j.ins.2019.08.065 – volume: 45 start-page: 2350 issue: 10 year: 2015 ident: 10.1016/j.advengsoft.2025.103868_b14 article-title: Composite particle swarm optimizer with historical memory for function optimization publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2015.2424836 – volume: 10 start-page: 281 issue: 3 year: 2006 ident: 10.1016/j.advengsoft.2025.103868_b5 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2005.857610 – volume: 125 year: 2022 ident: 10.1016/j.advengsoft.2025.103868_b29 article-title: A simplified non-equidistant grey prediction evolution algorithm for global optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.109081 – volume: 42 start-page: 7831 issue: 21 year: 2015 ident: 10.1016/j.advengsoft.2025.103868_b42 article-title: Backtracking search algorithm with three constraint handling methods for constrained optimization problems publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.05.050 – volume: 11 start-page: 31549 year: 2023 ident: 10.1016/j.advengsoft.2025.103868_b18 article-title: A bare-bones particle swarm optimization with crossed memory for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3250228 – volume: 38 start-page: 4348 issue: 4 year: 2011 ident: 10.1016/j.advengsoft.2025.103868_b11 article-title: A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.09.104 – volume: 209 start-page: 16 year: 2012 ident: 10.1016/j.advengsoft.2025.103868_b12 article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization publication-title: Inform Sci doi: 10.1016/j.ins.2012.04.028 – start-page: 1 year: 2012 ident: 10.1016/j.advengsoft.2025.103868_b13 article-title: A memory binary particle swarm optimization – volume: 50 start-page: 4862 issue: 12 year: 2019 ident: 10.1016/j.advengsoft.2025.103868_b16 article-title: Triple archives particle swarm optimization publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2943928 – volume: 78 year: 2023 ident: 10.1016/j.advengsoft.2025.103868_b35 article-title: Non-equidistant grey prediction evolution algorithm: A mathematical model-based meta-heuristic technique publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2023.101276 – start-page: 372 year: 2017 ident: 10.1016/j.advengsoft.2025.103868_b39 article-title: Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving CEC2017 benchmark problems – start-page: 1942 year: 1995 ident: 10.1016/j.advengsoft.2025.103868_b1 – volume: 20 start-page: 89 issue: 1 year: 2007 ident: 10.1016/j.advengsoft.2025.103868_b50 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2006.03.003 |
| SSID | ssj0014021 |
| Score | 2.426634 |
| Snippet | Particle swarm optimization (PSO) and its numerous performance-enhancing variants are a kind of stochastic optimization technique based on collaborative... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103868 |
| SubjectTerms | Future information Improved particle swarm optimization algorithm Non-equidistant grey prediction evolutionary algorithm Particle swarm optimization algorithm |
| Title | A composite particle swarm optimization algorithm with future information inspired by non-equidistant grey predictive evolution for global optimization problems and engineering problems |
| URI | https://dx.doi.org/10.1016/j.advengsoft.2025.103868 |
| Volume | 202 |
| WOSCitedRecordID | wos001420573300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0965-9978 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0014021 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMceBQQ5aU5cLNcJU78WHGKUFHpoUIQRG7WenedOkrskFfbn8Z_4Ecx-7LdUokihBRZ0di7a2s-e2dmv50h5G0SUjrMM-5zwXJ_yFnkU4Zea6IoVXGS8_4g08Um4tPTZDKhnzqdn24vzG4el2VycUGX_1XVKENlq62zf6HuulMU4H9UOh5R7Xi8leJHmiauuFjSW9rz3vqcrRZehd-Hhd146bH5tFoVm7OFicWa5CKeTaRqKZBqGd6YqGVV-vL7thDK3iw3HrrplyrBgCj0B9OTO_tQmrdo04xcGc-WrjE5oWWTBrE-0baTR4aaoMm67WvXOGucK7Kayi9FadAKZBwzHfX9vC0aqOqll7OqnGaVE04KS0L-Jssxq8UnhQucn7FqVsh2NCQIWyQaHaJz23QaTpSOdUahT6mpFeQ--4He6f37FGKiGbNDJnC2marHOlQD6UzypgLQtQTdX1T3qvcgNLP_HbIXxCjpkr3Rx6PJSb2qhb66ruDobscyywzf8ObxbjaXWibQ-BF5YH0XGBlMPSYdWe6Th9aPATtLrFHkSoU42T6538p7-YT8GEGNUXAYBY1RaGMGaoyCwigYjEILo-AwCtklXMMoKIxCg1GoMQrYHgxGr47noAiIUWjhrj7xlHz9cDR-f-zbGiI-x9lq44eRDEV_GGc9EcVZjr-sJ_MsTERGhQgjHiV5wCjv0Vxk_SiP0SFhLJc8GqIpLgeDZ6SLdy-fE0BHH-V8gNepun19FjKacDTAcyk4l_yAxE5VKbcJ9lWdl3nqmJSztFFyqpScGiUfkH7dcmmSzNyizTuHhtQay8YIThHIf2z94p9avyT3mnfvFeluVlv5mtzlu02xXr2xqP8FUkH7mg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+composite+particle+swarm+optimization+algorithm+with+future+information+inspired+by+non-equidistant+grey+predictive+evolution+for+global+optimization+problems+and+engineering+problems&rft.jtitle=Advances+in+engineering+software+%281992%29&rft.au=Hao%2C+Rui&rft.au=Hu%2C+Zhongbo&rft.au=Xiong%2C+WenTao&rft.au=Jiang%2C+Shaojie&rft.date=2025-04-01&rft.pub=Elsevier+Ltd&rft.issn=0965-9978&rft.volume=202&rft_id=info:doi/10.1016%2Fj.advengsoft.2025.103868&rft.externalDocID=S0965997825000067 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-9978&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-9978&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-9978&client=summon |