Cluster-based distributed augmented Lagrangian algorithm for a class of constrained convex optimization problems

We propose a distributed solution for a constrained convex optimization problem over a network of clustered agents each consisted of a set of subagents. The communication range of the clustered agents is such that they can form a connected undirected graph topology. The total cost in this optimizati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatica (Oxford) Ročník 129; s. 109608
Hlavní autoři: Moradian, Hossein, Kia, Solmaz S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2021
Témata:
ISSN:0005-1098, 1873-2836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose a distributed solution for a constrained convex optimization problem over a network of clustered agents each consisted of a set of subagents. The communication range of the clustered agents is such that they can form a connected undirected graph topology. The total cost in this optimization problem is the sum of the local convex costs of the subagents of each cluster. We seek a minimizer of this cost subject to a set of affine equality constraints, and a set of affine inequality constraints specifying the bounds on the decision variables if such bounds exist. We design our distributed algorithm in a cluster-based framework which results in a significant reduction in communication and computation costs. Our proposed distributed solution is a novel continuous-time algorithm that is linked to the augmented Lagrangian approach. It converges asymptotically when the local cost functions are convex and exponentially when they are strongly convex and have Lipschitz gradients. Moreover, we use an ϵ-exact penalty function to address the inequality constraints and derive an explicit lower bound on the penalty function weight to guarantee convergence to ϵ-neighborhood of the global minimum value of the cost. A numerical example demonstrates our results.
AbstractList We propose a distributed solution for a constrained convex optimization problem over a network of clustered agents each consisted of a set of subagents. The communication range of the clustered agents is such that they can form a connected undirected graph topology. The total cost in this optimization problem is the sum of the local convex costs of the subagents of each cluster. We seek a minimizer of this cost subject to a set of affine equality constraints, and a set of affine inequality constraints specifying the bounds on the decision variables if such bounds exist. We design our distributed algorithm in a cluster-based framework which results in a significant reduction in communication and computation costs. Our proposed distributed solution is a novel continuous-time algorithm that is linked to the augmented Lagrangian approach. It converges asymptotically when the local cost functions are convex and exponentially when they are strongly convex and have Lipschitz gradients. Moreover, we use an ϵ-exact penalty function to address the inequality constraints and derive an explicit lower bound on the penalty function weight to guarantee convergence to ϵ-neighborhood of the global minimum value of the cost. A numerical example demonstrates our results.
ArticleNumber 109608
Author Kia, Solmaz S.
Moradian, Hossein
Author_xml – sequence: 1
  givenname: Hossein
  surname: Moradian
  fullname: Moradian, Hossein
  email: hmoradia@uci.edu
– sequence: 2
  givenname: Solmaz S.
  surname: Kia
  fullname: Kia, Solmaz S.
  email: solmaz@uci.edu
BookMark eNqNUF1LwzAUDTLBbfof8gc6k7Zr0xdBh18w8GXvIUlvakablCQd6q83c4Lgiz7dcz_O4Z6zQDPrLCCEKVlRQqvr_UpM0Q0iGiVWOclpGjcVYWdoTlldZDkrqhmaE0LWWdqwC7QIYZ_akrJ8jsZNP4UIPpMiQItbE6I3cooJi6kbwB7RVnRe2M4Ii0XfOW_i64C181hg1YsQsNNYOZuowth0n_AB3rAboxnMR3rNWTx6J3sYwiU616IPcPVdl2j3cL_bPGXbl8fnze02UwVlMSslK3OqgGqZHoW8yCtGmKxFIxtdFZUWlSyaEmoNpIVmLWu6hkbpOgGidbFE7CSrvAvBg-ajN4Pw75wSfgyO7_lPcPwYHD8Fl6g3v6jKxC8TR3_9fwTuTgKQ_B0MeB6UAaugNR5U5K0zf4t8AvvXltw
CitedBy_id crossref_primary_10_1007_s11424_023_2337_z
crossref_primary_10_3389_fenvs_2024_1408970
crossref_primary_10_1109_TAC_2022_3152720
crossref_primary_10_1109_TCNS_2022_3188481
crossref_primary_10_1109_TSIPN_2024_3463408
crossref_primary_10_1080_00207721_2022_2132545
crossref_primary_10_1016_j_automatica_2025_112575
crossref_primary_10_1007_s40305_023_00496_y
crossref_primary_10_1109_TAC_2023_3301957
crossref_primary_10_1109_TCNS_2023_3290081
Cites_doi 10.1016/j.automatica.2016.07.003
10.1561/2200000016
10.1109/TNET.2013.2251896
10.1109/TWC.2006.1687734
10.1016/0167-6377(85)90030-6
10.1109/TAC.2015.2449811
10.1016/j.sysconle.2018.10.007
10.1109/TCOMM.2004.831346
10.1016/j.ifacol.2018.12.040
10.1109/TPWRS.2012.2188912
10.1109/TAC.2013.2275667
10.1109/TAC.2014.2363299
10.1109/PESGM.2012.6345156
10.1109/CDC.2011.6160931
10.1109/TAC.2011.2161027
10.23919/ACC.2017.7963458
10.1109/CDC.2018.8619343
10.1016/j.automatica.2015.03.001
10.1016/j.ifacol.2016.05.003
10.1109/CDC.2011.6161503
10.1109/TCNS.2015.2399191
10.1007/BFb0120696
10.1109/CDC.2018.8619760
10.1016/j.sysconle.2017.07.012
10.23919/ACC.2018.8431779
10.1109/CDC.2017.8264654
10.1109/CDC.2018.8619651
10.1016/j.orl.2012.11.009
10.1007/s10957-006-9080-1
10.1016/j.automatica.2016.08.007
10.1109/TSP.2011.2169407
10.1109/CDC.2018.8619512
10.1109/TSG.2017.2684183
10.1109/CDC.2012.6426665
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.automatica.2021.109608
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2836
ExternalDocumentID 10_1016_j_automatica_2021_109608
S000510982100128X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c318t-4b8421ce1fb418e2326808b7a9b9f636fa6b394e7fe0de95b715e9cf7b710ff3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655689600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0005-1098
IngestDate Sat Nov 29 07:31:58 EST 2025
Tue Nov 18 22:29:55 EST 2025
Fri Feb 23 02:41:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Distributed constrained convex optimization
Optimal resource allocation
Penalty function methods
Augmented Lagrangian
Primal–dual solutions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-4b8421ce1fb418e2326808b7a9b9f636fa6b394e7fe0de95b715e9cf7b710ff3
ParticipantIDs crossref_primary_10_1016_j_automatica_2021_109608
crossref_citationtrail_10_1016_j_automatica_2021_109608
elsevier_sciencedirect_doi_10_1016_j_automatica_2021_109608
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Automatica (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, J., & Elia, N. (2011). A control perspective for centralized and distributed convex optimization. In
Bullo, Cortés, Martínez (b8) 2009
Kia (b23) 2017; 107
Cherukuri, Cortés (b11) 2016; 74
Kar, S., & Hug, G. (2012). Distributed robust economic dispatch in power systems: A consensus + innovations approach. In
Zhang, Y., & Zavlanos, M. M. (2018). A consensus-based distributed augmented Lagrangian method. In
FL, USA.
WA, USA.
Boyd, Parikh, Chu, Peleato, Eckstein (b6) 2010; 3
(pp. 3688–3693). Hawaii, USA.
Wood, Wollenberg, Sheble (b39) 2013
Xiao, Johansson, Boyd (b41) 2004; 52
CA, USA.
Richter, S., Morari, M., & Jones, C. (2011). Towards computational complexity certification for constrained MPC based on Lagrange relaxation and the fast gradient method. In
Cherukuri, Cortés (b12) 2016; 74
Alghunaim, S. A., Yuan, K., & Sayed, A. H. (2018). Dual coupled diffusion for distributed optimization with affine constraints. In
Cherukuri, Cortés (b10) 2015; 2
Vaquero, Cortes (b34) 2018; 51
(pp. 1–8). San Diego, CA.
Kia, S. S. (2016). Distributed optimal resource allocation over networked systems and use of an epsilon-exact penalty function. In
Zhang, Chow (b43) 2012; 27
Madan, Lall (b25) 2006; 5
Wei, Wang, Li, Mei (b38) 2017; 8
Arrow, Hurwicz, Uzawa (b2) 1958
Srivastava, P., & Cortes, J. (2018). Distributed algorithm via continuously differentiable exact penalty method for network optimization. In
Jakovetic, Moura, Xavier (b19) 2015; 60
Chen, Lau (b9) 2012; 60
Ding, D., Hu, B., Dhingra, N., & Jovanovic, M. (2018). An exponentially convergent primal-dual algorithm for nonsmooth composite minimization. In
Ding, D., & Jovanovic, M. (2018). A primal-dual Laplacian gradient flow dynamics for distributed resource allocation problems. In
Bertsekas (b4) 1999
Zholbaryssov, Fooladivanda, Domínguez-García (b45) 2019; 123
Boyd, Vandenberghe (b7) 2004
Bertsekas, Tsitsiklis (b5) 1997
Moradian, Kia (b28) 2020
Haddad, Chellaboina (b18) 2008
(pp. 5223–5229). Orlando, Florida, USA.
Bertsekas (b3) 1975; 3
Xiao, Boyd (b40) 2006; 129
Varagnolo, Zanella, Cenedese, Pillonetto, Schenato (b35) 2015; 61
Kia, S. S. (2017a). An augmented Lagrangian distributed algorithm for an in-network optimal resource allocation problem. In
Mangasarian, Fromovitz (b27) 1967; 17
Duchi, Agarwal, Wainwright (b16) 2012; 57
WI, USA.
Pinar, Zenios (b30) 1994; 4
Yi, Hong, Liu (b42) 2016; 74
Mangasarian (b26) 1985; 4
Patrinos, Bemporad (b29) 2014
Melbourne, Australia.
Wachsmuth (b36) 2013; 41
Dominguez-Garcia, A. D., Cady, S. T., & Hadjicostis, C. N. (2012). Decentralized optimal dispatch of distributed energy resources. In
Ferragut, Paganini (b17) 2014; 22
Kia, Cortés, Martínez (b24) 2014; 55
Rostami, R., Costantini, G., & Görges, D. (2017). ADMM-based distributed model predictive control: Primal and dual approaches. In
Haddad (10.1016/j.automatica.2021.109608_b18) 2008
Madan (10.1016/j.automatica.2021.109608_b25) 2006; 5
Wachsmuth (10.1016/j.automatica.2021.109608_b36) 2013; 41
Bertsekas (10.1016/j.automatica.2021.109608_b3) 1975; 3
10.1016/j.automatica.2021.109608_b14
10.1016/j.automatica.2021.109608_b13
10.1016/j.automatica.2021.109608_b33
Mangasarian (10.1016/j.automatica.2021.109608_b26) 1985; 4
Pinar (10.1016/j.automatica.2021.109608_b30) 1994; 4
Arrow (10.1016/j.automatica.2021.109608_b2) 1958
Xiao (10.1016/j.automatica.2021.109608_b41) 2004; 52
Yi (10.1016/j.automatica.2021.109608_b42) 2016; 74
10.1016/j.automatica.2021.109608_b15
10.1016/j.automatica.2021.109608_b37
Cherukuri (10.1016/j.automatica.2021.109608_b11) 2016; 74
Cherukuri (10.1016/j.automatica.2021.109608_b10) 2015; 2
10.1016/j.automatica.2021.109608_b21
10.1016/j.automatica.2021.109608_b20
Boyd (10.1016/j.automatica.2021.109608_b7) 2004
Bertsekas (10.1016/j.automatica.2021.109608_b4) 1999
Boyd (10.1016/j.automatica.2021.109608_b6) 2010; 3
Kia (10.1016/j.automatica.2021.109608_b23) 2017; 107
Zhang (10.1016/j.automatica.2021.109608_b43) 2012; 27
Wei (10.1016/j.automatica.2021.109608_b38) 2017; 8
Moradian (10.1016/j.automatica.2021.109608_b28) 2020
Ferragut (10.1016/j.automatica.2021.109608_b17) 2014; 22
Duchi (10.1016/j.automatica.2021.109608_b16) 2012; 57
Wood (10.1016/j.automatica.2021.109608_b39) 2013
Bullo (10.1016/j.automatica.2021.109608_b8) 2009
10.1016/j.automatica.2021.109608_b22
Patrinos (10.1016/j.automatica.2021.109608_b29) 2014
10.1016/j.automatica.2021.109608_b44
10.1016/j.automatica.2021.109608_b1
Varagnolo (10.1016/j.automatica.2021.109608_b35) 2015; 61
Chen (10.1016/j.automatica.2021.109608_b9) 2012; 60
Cherukuri (10.1016/j.automatica.2021.109608_b12) 2016; 74
10.1016/j.automatica.2021.109608_b32
10.1016/j.automatica.2021.109608_b31
Xiao (10.1016/j.automatica.2021.109608_b40) 2006; 129
Mangasarian (10.1016/j.automatica.2021.109608_b27) 1967; 17
Bertsekas (10.1016/j.automatica.2021.109608_b5) 1997
Vaquero (10.1016/j.automatica.2021.109608_b34) 2018; 51
Zholbaryssov (10.1016/j.automatica.2021.109608_b45) 2019; 123
Jakovetic (10.1016/j.automatica.2021.109608_b19) 2015; 60
Kia (10.1016/j.automatica.2021.109608_b24) 2014; 55
References_xml – volume: 60
  start-page: 443
  year: 2012
  end-page: 452
  ident: b9
  article-title: Convergence analysis of saddle point problems in time varying wireless systems – control theoretical approach
  publication-title: IEEE Transactions on Signal Processing
– volume: 4
  start-page: 1757
  year: 1985
  end-page: 1780
  ident: b26
  article-title: Computable numerical bounds for LAGRANGE multipliers of stationary points of non-convex differentiable non-linear programs
  publication-title: Operations Research Letters
– volume: 8
  start-page: 2974
  year: 2017
  end-page: 2987
  ident: b38
  article-title: Optimal power flow of radial networks and its variations: A sequential convex optimization approach
  publication-title: IEEE Transactions on Smart Grid
– year: 2009
  ident: b8
  publication-title: Distributed control of robotic networks
– volume: 57
  start-page: 592
  year: 2012
  end-page: 606
  ident: b16
  article-title: Dual averaging for distributed optimization: Convergence analysis and network scaling
  publication-title: IEEE Transactions on Automatic Control
– year: 2020
  ident: b28
  article-title: Cluster-based distributed augmented Lagrangian algorithm for a class of constrained convex optimization problems
– year: 1997
  ident: b5
  article-title: Parallel and distributed computation: Numerical methods
– reference: . WI, USA.
– volume: 22
  start-page: 349
  year: 2014
  end-page: 362
  ident: b17
  article-title: Network resource allocation for users with multiple connections: fairness and stability
  publication-title: IEEE/ACM Transactions on Networking
– reference: . FL, USA.
– reference: Dominguez-Garcia, A. D., Cady, S. T., & Hadjicostis, C. N. (2012). Decentralized optimal dispatch of distributed energy resources. In
– volume: 17
  start-page: 37
  year: 1967
  end-page: 47
  ident: b27
  article-title: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints
  publication-title: Operations Research Letters
– volume: 61
  start-page: 994
  year: 2015
  end-page: 1009
  ident: b35
  article-title: Newton-Raphson consensus for distributed convex optimization
  publication-title: IEEE Transactions on Automatic Control
– volume: 123
  start-page: 47
  year: 2019
  end-page: 54
  ident: b45
  article-title: Resilient distributed optimal generation dispatch for lossy ac microgrids
  publication-title: Systems & Control Letters
– reference: (pp. 1–8). San Diego, CA.
– reference: . WA, USA.
– reference: Zhang, Y., & Zavlanos, M. M. (2018). A consensus-based distributed augmented Lagrangian method. In
– reference: Ding, D., & Jovanovic, M. (2018). A primal-dual Laplacian gradient flow dynamics for distributed resource allocation problems. In
– volume: 55
  start-page: 254
  year: 2014
  end-page: 264
  ident: b24
  article-title: Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication
  publication-title: Automatica
– reference: (pp. 5223–5229). Orlando, Florida, USA.
– reference: Kia, S. S. (2016). Distributed optimal resource allocation over networked systems and use of an epsilon-exact penalty function. In
– reference: Alghunaim, S. A., Yuan, K., & Sayed, A. H. (2018). Dual coupled diffusion for distributed optimization with affine constraints. In
– volume: 51
  start-page: 230
  year: 2018
  end-page: 235
  ident: b34
  article-title: Distributed augmentation-regularization for robust online convex optimization
  publication-title: IFAC-PapersOnLine
– volume: 74
  start-page: 259
  year: 2016
  end-page: 269
  ident: b42
  article-title: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and its application to economic dispatch of power systems
  publication-title: Automatica
– volume: 3
  start-page: 1
  year: 1975
  end-page: 25
  ident: b3
  article-title: Nondifferentiable optimization via approximation
  publication-title: Mathematical Programing Study
– volume: 2
  start-page: 226
  year: 2015
  end-page: 237
  ident: b10
  article-title: Distributed generator coordination for initialization and anytime optimization in economic dispatch
  publication-title: IEEE Transactions on Control of Network Systems
– volume: 60
  start-page: 922
  year: 2015
  end-page: 936
  ident: b19
  article-title: Linear convergence rate of a class of distributed augmented Lagrangian algorithms
  publication-title: IEEE Transactions on Automatic Control
– year: 2004
  ident: b7
  article-title: Convex optimization
– reference: Kia, S. S. (2017a). An augmented Lagrangian distributed algorithm for an in-network optimal resource allocation problem. In
– volume: 3
  start-page: 1
  year: 2010
  end-page: 122
  ident: b6
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends in Machine Learning
– reference: Ding, D., Hu, B., Dhingra, N., & Jovanovic, M. (2018). An exponentially convergent primal-dual algorithm for nonsmooth composite minimization. In
– reference: Richter, S., Morari, M., & Jones, C. (2011). Towards computational complexity certification for constrained MPC based on Lagrange relaxation and the fast gradient method. In
– year: 1958
  ident: b2
  article-title: Studies in linear and nonlinear programming
– year: 1999
  ident: b4
  article-title: Nonlinear programming
– reference: Wang, J., & Elia, N. (2011). A control perspective for centralized and distributed convex optimization. In
– volume: 74
  start-page: 183
  year: 2016
  end-page: 193
  ident: b12
  article-title: Initialization-free distributed coordination for economic dispatch under varying loads and generator commitment
  publication-title: Automatica
– year: 2013
  ident: b39
  article-title: Power generation, operation and control
– volume: 27
  start-page: 1761
  year: 2012
  end-page: 1768
  ident: b43
  article-title: Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid
  publication-title: IEEE Transactions on Power Systems
– volume: 74
  start-page: 183
  year: 2016
  end-page: 193
  ident: b11
  article-title: Initialization-free distributed coordination for economic dispatch under varying loads and generator commitment
  publication-title: Automatica
– reference: (pp. 3688–3693). Hawaii, USA.
– volume: 129
  start-page: 469
  year: 2006
  end-page: 488
  ident: b40
  article-title: Optimal scaling of a gradient method for distributed resource allocation
  publication-title: Journal of Optimization Theory and Applications
– reference: . Melbourne, Australia.
– volume: 41
  start-page: 78
  year: 2013
  end-page: 80
  ident: b36
  article-title: On LICQ and the uniqueness of Lagrange multipliers
  publication-title: Operations Research Letters
– reference: Kar, S., & Hug, G. (2012). Distributed robust economic dispatch in power systems: A consensus + innovations approach. In
– volume: 107
  start-page: 49
  year: 2017
  end-page: 57
  ident: b23
  article-title: Distributed optimal in-network resource allocation algorithm design via a control theoretic approach
  publication-title: Systems & Control Letters
– volume: 52
  start-page: 1136
  year: 2004
  end-page: 1144
  ident: b41
  article-title: Simultaneous routing and resource allocation via dual decomposition
  publication-title: IEEE Transactions on Communications
– volume: 5
  start-page: 2185
  year: 2006
  end-page: 2193
  ident: b25
  article-title: Distributed algorithms for maximum lifetime routing in wireless sensor networks
  publication-title: IEEE Transactions on Wireless Communication
– reference: Rostami, R., Costantini, G., & Görges, D. (2017). ADMM-based distributed model predictive control: Primal and dual approaches. In
– volume: 4
  start-page: 1136
  year: 1994
  end-page: 1144
  ident: b30
  article-title: On smoothing exact penalty functions for convex constrained optimization
  publication-title: IEEE Transactions on Communications
– year: 2014
  ident: b29
  article-title: An accelerated dual gradient-projection algorithm for embedded linear model predictive control
  publication-title: IEEE Transactions on Automatic Control
– reference: Srivastava, P., & Cortes, J. (2018). Distributed algorithm via continuously differentiable exact penalty method for network optimization. In
– reference: . CA, USA.
– year: 2008
  ident: b18
  article-title: Nonlinear dynamical systems and control
– year: 1999
  ident: 10.1016/j.automatica.2021.109608_b4
– volume: 74
  start-page: 183
  year: 2016
  ident: 10.1016/j.automatica.2021.109608_b12
  article-title: Initialization-free distributed coordination for economic dispatch under varying loads and generator commitment
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.07.003
– volume: 3
  start-page: 1
  year: 2010
  ident: 10.1016/j.automatica.2021.109608_b6
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000016
– volume: 4
  start-page: 1136
  issue: 3
  year: 1994
  ident: 10.1016/j.automatica.2021.109608_b30
  article-title: On smoothing exact penalty functions for convex constrained optimization
  publication-title: IEEE Transactions on Communications
– volume: 22
  start-page: 349
  issue: 2
  year: 2014
  ident: 10.1016/j.automatica.2021.109608_b17
  article-title: Network resource allocation for users with multiple connections: fairness and stability
  publication-title: IEEE/ACM Transactions on Networking
  doi: 10.1109/TNET.2013.2251896
– volume: 5
  start-page: 2185
  issue: 8
  year: 2006
  ident: 10.1016/j.automatica.2021.109608_b25
  article-title: Distributed algorithms for maximum lifetime routing in wireless sensor networks
  publication-title: IEEE Transactions on Wireless Communication
  doi: 10.1109/TWC.2006.1687734
– volume: 4
  start-page: 1757
  issue: 2
  year: 1985
  ident: 10.1016/j.automatica.2021.109608_b26
  article-title: Computable numerical bounds for LAGRANGE multipliers of stationary points of non-convex differentiable non-linear programs
  publication-title: Operations Research Letters
  doi: 10.1016/0167-6377(85)90030-6
– volume: 61
  start-page: 994
  issue: 4
  year: 2015
  ident: 10.1016/j.automatica.2021.109608_b35
  article-title: Newton-Raphson consensus for distributed convex optimization
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2015.2449811
– volume: 123
  start-page: 47
  year: 2019
  ident: 10.1016/j.automatica.2021.109608_b45
  article-title: Resilient distributed optimal generation dispatch for lossy ac microgrids
  publication-title: Systems & Control Letters
  doi: 10.1016/j.sysconle.2018.10.007
– volume: 52
  start-page: 1136
  issue: 7
  year: 2004
  ident: 10.1016/j.automatica.2021.109608_b41
  article-title: Simultaneous routing and resource allocation via dual decomposition
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOMM.2004.831346
– volume: 17
  start-page: 37
  year: 1967
  ident: 10.1016/j.automatica.2021.109608_b27
  article-title: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints
  publication-title: Operations Research Letters
– volume: 51
  start-page: 230
  issue: 23
  year: 2018
  ident: 10.1016/j.automatica.2021.109608_b34
  article-title: Distributed augmentation-regularization for robust online convex optimization
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.12.040
– volume: 27
  start-page: 1761
  issue: 4
  year: 2012
  ident: 10.1016/j.automatica.2021.109608_b43
  article-title: Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2012.2188912
– year: 2009
  ident: 10.1016/j.automatica.2021.109608_b8
– year: 2014
  ident: 10.1016/j.automatica.2021.109608_b29
  article-title: An accelerated dual gradient-projection algorithm for embedded linear model predictive control
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2013.2275667
– volume: 60
  start-page: 922
  issue: 4
  year: 2015
  ident: 10.1016/j.automatica.2021.109608_b19
  article-title: Linear convergence rate of a class of distributed augmented Lagrangian algorithms
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2014.2363299
– ident: 10.1016/j.automatica.2021.109608_b20
  doi: 10.1109/PESGM.2012.6345156
– ident: 10.1016/j.automatica.2021.109608_b31
  doi: 10.1109/CDC.2011.6160931
– volume: 57
  start-page: 592
  issue: 3
  year: 2012
  ident: 10.1016/j.automatica.2021.109608_b16
  article-title: Dual averaging for distributed optimization: Convergence analysis and network scaling
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2011.2161027
– ident: 10.1016/j.automatica.2021.109608_b22
  doi: 10.23919/ACC.2017.7963458
– ident: 10.1016/j.automatica.2021.109608_b1
  doi: 10.1109/CDC.2018.8619343
– volume: 55
  start-page: 254
  year: 2014
  ident: 10.1016/j.automatica.2021.109608_b24
  article-title: Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.03.001
– ident: 10.1016/j.automatica.2021.109608_b21
  doi: 10.1016/j.ifacol.2016.05.003
– ident: 10.1016/j.automatica.2021.109608_b37
  doi: 10.1109/CDC.2011.6161503
– volume: 2
  start-page: 226
  issue: 3
  year: 2015
  ident: 10.1016/j.automatica.2021.109608_b10
  article-title: Distributed generator coordination for initialization and anytime optimization in economic dispatch
  publication-title: IEEE Transactions on Control of Network Systems
  doi: 10.1109/TCNS.2015.2399191
– volume: 74
  start-page: 183
  year: 2016
  ident: 10.1016/j.automatica.2021.109608_b11
  article-title: Initialization-free distributed coordination for economic dispatch under varying loads and generator commitment
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.07.003
– year: 2013
  ident: 10.1016/j.automatica.2021.109608_b39
– volume: 3
  start-page: 1
  year: 1975
  ident: 10.1016/j.automatica.2021.109608_b3
  article-title: Nondifferentiable optimization via approximation
  publication-title: Mathematical Programing Study
  doi: 10.1007/BFb0120696
– ident: 10.1016/j.automatica.2021.109608_b13
  doi: 10.1109/CDC.2018.8619760
– year: 2008
  ident: 10.1016/j.automatica.2021.109608_b18
– volume: 107
  start-page: 49
  year: 2017
  ident: 10.1016/j.automatica.2021.109608_b23
  article-title: Distributed optimal in-network resource allocation algorithm design via a control theoretic approach
  publication-title: Systems & Control Letters
  doi: 10.1016/j.sysconle.2017.07.012
– year: 1997
  ident: 10.1016/j.automatica.2021.109608_b5
– ident: 10.1016/j.automatica.2021.109608_b14
  doi: 10.23919/ACC.2018.8431779
– ident: 10.1016/j.automatica.2021.109608_b32
  doi: 10.1109/CDC.2017.8264654
– ident: 10.1016/j.automatica.2021.109608_b33
  doi: 10.1109/CDC.2018.8619651
– volume: 41
  start-page: 78
  issue: 1
  year: 2013
  ident: 10.1016/j.automatica.2021.109608_b36
  article-title: On LICQ and the uniqueness of Lagrange multipliers
  publication-title: Operations Research Letters
  doi: 10.1016/j.orl.2012.11.009
– volume: 129
  start-page: 469
  issue: 3
  year: 2006
  ident: 10.1016/j.automatica.2021.109608_b40
  article-title: Optimal scaling of a gradient method for distributed resource allocation
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-006-9080-1
– volume: 74
  start-page: 259
  year: 2016
  ident: 10.1016/j.automatica.2021.109608_b42
  article-title: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and its application to economic dispatch of power systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.08.007
– volume: 60
  start-page: 443
  issue: 1
  year: 2012
  ident: 10.1016/j.automatica.2021.109608_b9
  article-title: Convergence analysis of saddle point problems in time varying wireless systems – control theoretical approach
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2011.2169407
– year: 2020
  ident: 10.1016/j.automatica.2021.109608_b28
– ident: 10.1016/j.automatica.2021.109608_b44
  doi: 10.1109/CDC.2018.8619512
– year: 1958
  ident: 10.1016/j.automatica.2021.109608_b2
– year: 2004
  ident: 10.1016/j.automatica.2021.109608_b7
– volume: 8
  start-page: 2974
  issue: 6
  year: 2017
  ident: 10.1016/j.automatica.2021.109608_b38
  article-title: Optimal power flow of radial networks and its variations: A sequential convex optimization approach
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2017.2684183
– ident: 10.1016/j.automatica.2021.109608_b15
  doi: 10.1109/CDC.2012.6426665
SSID ssj0004182
Score 2.4412775
Snippet We propose a distributed solution for a constrained convex optimization problem over a network of clustered agents each consisted of a set of subagents. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109608
SubjectTerms Augmented Lagrangian
Distributed constrained convex optimization
Optimal resource allocation
Penalty function methods
Primal–dual solutions
Title Cluster-based distributed augmented Lagrangian algorithm for a class of constrained convex optimization problems
URI https://dx.doi.org/10.1016/j.automatica.2021.109608
Volume 129
WOSCitedRecordID wos000655689600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004182
  issn: 0005-1098
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuoftYXQ31u6CHvZmHHy3RZ9C6VhHVwbJQ948WZayFMcOqVNCf33PseRLWWEdYy9GGBQp53w--ix_54iQz75ywtD3MPOXRXbAo8hOWCLsQCiXZzlmXzaJwhfx5WWyWLAfo9HPNhfmpojLMtnv2ea_uhrugbMxdfYv3N39KNyANjgdruB2uD7K8afFDosf2Lg-5fgBRp9pBW2-WzYlOHPrgi9hjVriw82LZbVd1b_WWk9pCaTTWmyOxWU5sNBca9P3VgXxZW0SNy1zFM31kN5Od3XV1IDlTRnTvVbOd3sN3wFviMdmvYPVWa4GGoCGxc6qYs1vrdlkuBvhuZ1y1WyRtWkyvSZJh10sd6qPm55IHWmT2LeB20T3QrGe0W9hXe8wXKGox_yLCQ6OtbAiJ-mXsk5gOGu4KYzouc3HwsUTcuDFIUvG5GB6frb41ufOuomuKG-maNReWgP48HgPU5gBLZkfkhfmfYJONQ5ekpEsX5HngyqTr8nmHiLoABG0QwTtEUE7RFBwH-W0QQStFB0ggmpE0CEiaIuIN2T-5Wx--tU2B23YAkJ6bQdZEniukK7KwBwSSDYeyJLFnGVMRX6keJT5LJCxkk4uWZjFbiiZUDE0HKX8t2RcVqV8R2jkKmToXAgB1FyoDAKBBKNJTAF3svCIxK3pUmGK0OPEi7RVG16lvdFTNHqqjX5E3K7nRhdieUSfk9Y7qSGUmiimAKw_9j7-p97vybP--fhAxvV2Jz-Sp-KmXl1vPxkU3gHpC6Sn
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cluster-based+distributed+augmented+Lagrangian+algorithm+for+a+class+of+constrained+convex+optimization+problems&rft.jtitle=Automatica+%28Oxford%29&rft.au=Moradian%2C+Hossein&rft.au=Kia%2C+Solmaz+S.&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=0005-1098&rft.eissn=1873-2836&rft.volume=129&rft_id=info:doi/10.1016%2Fj.automatica.2021.109608&rft.externalDocID=S000510982100128X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon