Moduli Spaces of Self-Dual Connections over Asymptotically Locally Flat Gravitational Instantons
We investigate Yang–Mills instanton theory over four dimensional asymptotically locally flat (ALF) geometries, including gravitational instantons of this type, by exploiting the existence of a natural smooth compactification of these spaces introduced by Hausel–Hunsicker–Mazzeo. First referring to t...
Uloženo v:
| Vydáno v: | Communications in mathematical physics Ročník 280; číslo 2; s. 285 - 313 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer-Verlag
01.06.2008
Springer |
| Témata: | |
| ISSN: | 0010-3616, 1432-0916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We investigate Yang–Mills instanton theory over four dimensional asymptotically locally flat (ALF) geometries, including gravitational instantons of this type, by exploiting the existence of a natural smooth compactification of these spaces introduced by Hausel–Hunsicker–Mazzeo. First referring to the codimension 2 singularity removal theorem of Sibner–Sibner and Råde we prove that given a smooth, finite energy, self-dual SU(2) connection over a complete ALF space, its energy is congruent to a Chern–Simons invariant of the boundary three-manifold if the connection satisfies a certain holonomy condition at infinity and its curvature decays rapidly. Then we introduce framed moduli spaces of self-dual connections over Ricci flat ALF spaces. We prove that the moduli space of smooth, irreducible, rapidly decaying self-dual connections obeying the holonomy condition with fixed finite energy and prescribed asymptotic behaviour on a fixed bundle is a finite dimensional manifold. We calculate its dimension by a variant of the Gromov–Lawson relative index theorem. As an application, we study Yang–Mills instantons over the flat
, the multi-Taub–NUT family, and the Riemannian Schwarzschild space. |
|---|---|
| ISSN: | 0010-3616 1432-0916 |
| DOI: | 10.1007/s00220-008-0466-9 |