Sublinear time width-bounded separators and their application to the protein side-chain packing problem
Given d >2 and a set of n grid points Q in ℜ d , we design a randomized algorithm that finds a w -wide separator, which is determined by a hyper-plane, in sublinear time such that Q has at most points on either side of the hyper-plane, and at most points within distance to the hyper-plane, where...
Uloženo v:
| Vydáno v: | Journal of combinatorial optimization Ročník 15; číslo 4; s. 387 - 407 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.05.2008
Springer |
| Témata: | |
| ISSN: | 1382-6905, 1573-2886 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Given
d
>2 and a set of
n
grid points
Q
in
ℜ
d
, we design a randomized algorithm that finds a
w
-wide separator, which is determined by a hyper-plane, in
sublinear time such that
Q
has at most
points on either side of the hyper-plane, and at most
points within
distance to the hyper-plane, where
c
d
is a constant for fixed
d
. In particular,
c
3
=1.209. To our best knowledge, this is the first sublinear time algorithm for finding geometric separators. Our 3D separator is applied to derive an algorithm for the protein side-chain packing problem, which improves and simplifies the previous algorithm of Xu (Research in computational molecular biology, 9th annual international conference, pp. 408–422,
2005
). |
|---|---|
| ISSN: | 1382-6905 1573-2886 |
| DOI: | 10.1007/s10878-007-9092-2 |