Sublinear time width-bounded separators and their application to the protein side-chain packing problem

Given d >2 and a set of n grid points Q in ℜ d , we design a randomized algorithm that finds a w -wide separator, which is determined by a hyper-plane, in sublinear time such that Q has at most points on either side of the hyper-plane, and at most points within distance to the hyper-plane, where...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 15; číslo 4; s. 387 - 407
Hlavní autoři: Fu, Bin, Chen, Zhixiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.05.2008
Springer
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given d >2 and a set of n grid points Q in ℜ d , we design a randomized algorithm that finds a w -wide separator, which is determined by a hyper-plane, in sublinear time such that Q has at most points on either side of the hyper-plane, and at most points within distance to the hyper-plane, where c d is a constant for fixed d . In particular, c 3 =1.209. To our best knowledge, this is the first sublinear time algorithm for finding geometric separators. Our 3D separator is applied to derive an algorithm for the protein side-chain packing problem, which improves and simplifies the previous algorithm of Xu (Research in computational molecular biology, 9th annual international conference, pp. 408–422, 2005 ).
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-007-9092-2