Hierarchical Singular Value Decomposition of Tensors

The authors define the hierarchical singular value decomposition (SVD) for tensors of order d ≥ 2. This hierarchical SVD has properties like the matrix SVD (and collapses to the SVD in d = 2), and they prove these. In particular, one can find low rank (almost) best approximations in a hierarchical f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on matrix analysis and applications Ročník 31; číslo 4; s. 2029 - 2054
Hlavní autor: Grasedyck, Lars
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2010
Témata:
ISSN:0895-4798, 1095-7162
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The authors define the hierarchical singular value decomposition (SVD) for tensors of order d ≥ 2. This hierarchical SVD has properties like the matrix SVD (and collapses to the SVD in d = 2), and they prove these. In particular, one can find low rank (almost) best approximations in a hierarchical format (H-Tucker) which requires only ... parameters, where d is the order of the tensor, n the size of the modes, and k the (hierarchical) rank. The H-Tucker format is a specialization of the Tucker format and it contains as a special case all (canonical) rank k tensors. Based on this new concept of a hierarchical SVD the authors present algorithms for hierarchical tensor calculations allowing for a rigorous error analysis. The complexity of the truncation (finding lower rank approximations to hierarchical rank k tensors) is in ... and the attainable accuracy is just 2-3 digits less than machine precision.(ProQuest: ... denotes formulae/symbols omitted.)
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0895-4798
1095-7162
DOI:10.1137/090764189