Group divisible designs in MOLS of order ten
The maximum number of mutually orthogonal latin squares (MOLS) of order 10 is known to be between 2 and 6. A hypothetical set of four MOLS must contain at least one of the types of group divisible designs (GDDs) classified here. The proof is based on a dimension argument modified from work by Doughe...
Uložené v:
| Vydané v: | Designs, codes, and cryptography Ročník 71; číslo 2; s. 283 - 291 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Boston
Springer US
01.05.2014
Springer |
| Predmet: | |
| ISSN: | 0925-1022, 1573-7586 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The maximum number of mutually orthogonal latin squares (MOLS) of order 10 is known to be between 2 and 6. A hypothetical set of four MOLS must contain at least one of the types of group divisible designs (GDDs) classified here. The proof is based on a dimension argument modified from work by Dougherty. The argument has recently led to the discovery of a counterexample to Moorhouse’s conjecture on the rank of nets, found by Howard and Myrvold. Although it is known that even three MOLS can admit no nontrivial symmetry group, we are hopeful this classification via GDDs and dimension can offer some structure to aid the eventual goal of exhausting the search for four MOLS of order 10. |
|---|---|
| ISSN: | 0925-1022 1573-7586 |
| DOI: | 10.1007/s10623-012-9729-8 |