Stochastic MPC with offline uncertainty sampling

For discrete-time linear systems subject to multiplicative disturbance described by random variables, we develop a sampling-based Stochastic Model Predictive Control algorithm. Unlike earlier results employing a scenario approximation, we propose an offline sampling approach in the design phase inst...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatica (Oxford) Ročník 81; s. 176 - 183
Hlavní autoři: Lorenzen, Matthias, Dabbene, Fabrizio, Tempo, Roberto, Allgöwer, Frank
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2017
Témata:
ISSN:0005-1098, 1873-2836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For discrete-time linear systems subject to multiplicative disturbance described by random variables, we develop a sampling-based Stochastic Model Predictive Control algorithm. Unlike earlier results employing a scenario approximation, we propose an offline sampling approach in the design phase instead of online scenario generation. The paper highlights the structural difference between online and offline sampling and provides rigorous bounds on the number of samples needed to guarantee chance constraint satisfaction. The approach does not only significantly speed up the online computation, but furthermore allows to suitably tighten the constraints to guarantee robust recursive feasibility when bounds on the uncertain variables are provided. Under mild assumptions, asymptotic stability of the origin can be established.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2017.03.031