Using stochastic programming to train neural network approximation of nonlinear MPC laws
To facilitate the real-time implementation of nonlinear model predictive control (NMPC), this paper proposes a deep learning-based NMPC scheme, in which the NMPC law is approximated via a deep neural network (DNN). To optimize the DNN controller, a novel “optimize and train” architecture is designed...
Uloženo v:
| Vydáno v: | Automatica (Oxford) Ročník 146; s. 110665 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.12.2022
|
| Témata: | |
| ISSN: | 0005-1098, 1873-2836 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!