Analytic Continuation of Eigenvalues of a Quartic Oscillator

We consider the Schrödinger operator on the real line with even quartic potential x 4  +  α x 2 and study analytic continuation of eigenvalues, as functions of parameter α . We prove several properties of this analytic continuation conjectured by Bender, Wu, Loeffel and Martin. 1. All eigenvalues ar...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics Vol. 287; no. 2; pp. 431 - 457
Main Authors: Eremenko, Alexandre, Gabrielov, Andrei
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01.04.2009
Springer
Subjects:
ISSN:0010-3616, 1432-0916
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the Schrödinger operator on the real line with even quartic potential x 4  +  α x 2 and study analytic continuation of eigenvalues, as functions of parameter α . We prove several properties of this analytic continuation conjectured by Bender, Wu, Loeffel and Martin. 1. All eigenvalues are given by branches of two multi-valued analytic functions, one for even eigenfunctions and one for odd ones. 2. The only singularities of these multi-valued functions in the complex α -plane are algebraic ramification points, and there are only finitely many singularities over each compact subset of the α -plane.
AbstractList We consider the Schrödinger operator on the real line with even quartic potential x 4  +  α x 2 and study analytic continuation of eigenvalues, as functions of parameter α . We prove several properties of this analytic continuation conjectured by Bender, Wu, Loeffel and Martin. 1. All eigenvalues are given by branches of two multi-valued analytic functions, one for even eigenfunctions and one for odd ones. 2. The only singularities of these multi-valued functions in the complex α -plane are algebraic ramification points, and there are only finitely many singularities over each compact subset of the α -plane.
Author Eremenko, Alexandre
Gabrielov, Andrei
Author_xml – sequence: 1
  givenname: Alexandre
  surname: Eremenko
  fullname: Eremenko, Alexandre
  organization: Department of Mathematics, Purdue University
– sequence: 2
  givenname: Andrei
  surname: Gabrielov
  fullname: Gabrielov, Andrei
  email: agabriel@math.purdue.edu
  organization: Department of Mathematics, Purdue University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21213537$$DView record in Pascal Francis
BookMark eNp9kE1Lw0AQQBepYFv9Ad5y8bg6s5tsEvBSSv2AQhH0vEy3m7IlbspuIvTfmxi9eOhpGHhvYN6MTXzjLWO3CPcIkD9EACGAAxQclJJcXbApplJwKFFN2BQAgUuF6orNYjwAQCmUmrLHhaf61DqTLBvfOt9R6xqfNFWycnvrv6jubBxWSt46CgO4icbVNbVNuGaXFdXR3vzOOft4Wr0vX_h68_y6XKy5kVi0HK2hVFCZQpFSYbYkRVEpSpWpUJitzSu0cpehsbLciUwWMgWRGeqpDLP-izm7G-8eKRqqq0DeuKiPwX1SOGmBAmUm857LR86EJsZgK21c-_NQG8jVGkEPsfQYS_ex9BBLq97Ef-bf8XOOGJ3Ys35vgz40XehzxjPSN8MlfPA
CODEN CMPHAY
CitedBy_id crossref_primary_10_1007_BF03321758
crossref_primary_10_1016_j_physrep_2016_06_002
crossref_primary_10_1088_1751_8121_ac0733
crossref_primary_10_1007_BF03321817
crossref_primary_10_1080_10586458_2017_1325792
crossref_primary_10_1007_BF03321838
crossref_primary_10_1007_s10773_014_2403_3
crossref_primary_10_1088_1751_8113_49_10_105202
crossref_primary_10_1007_s13324_014_0092_y
crossref_primary_10_1088_0951_7715_23_10_008
crossref_primary_10_1007_s12220_020_00458_3
crossref_primary_10_3390_sym16050629
crossref_primary_10_1088_1751_8113_44_29_295205
crossref_primary_10_1016_j_aop_2013_12_004
crossref_primary_10_3390_quantum4030022
crossref_primary_10_1007_s00365_013_9185_3
crossref_primary_10_1016_j_aop_2013_05_016
crossref_primary_10_1007_s11005_010_0425_1
crossref_primary_10_1088_1361_6544_abdd93
crossref_primary_10_3390_sym16030353
crossref_primary_10_1088_1751_8113_45_17_175205
crossref_primary_10_3390_math10203721
crossref_primary_10_1080_17476933_2011_592576
crossref_primary_10_1088_1751_8113_45_17_175206
crossref_primary_10_1111_sapm_12134
crossref_primary_10_1007_s00220_012_1559_z
crossref_primary_10_1007_s11118_010_9208_7
crossref_primary_10_1007_s11005_009_0366_8
crossref_primary_10_1088_1751_8121_aa5186
Cites_doi 10.1007/978-3-662-06842-7
10.1006/aphy.1997.5737
10.5802/aif.1326
10.1016/0003-4916(70)90240-X
10.1088/0305-4470/31/14/001
10.1090/ulect/038
10.1007/978-3-642-66282-9
10.1088/0305-4470/34/28/305
10.1007/978-3-642-58016-1
10.1007/978-3-540-38361-1
10.1088/0305-4470/38/27/005
10.2307/2373998
10.1103/PhysRev.184.1231
10.5802/aif.2362
10.1007/BF02547780
10.1016/0375-9601(87)90456-7
10.1307/mmj/1163789921
10.1002/qua.560210103
10.1063/1.532206
10.1088/0305-4470/33/48/314
10.1090/conm/355/06453
10.24033/bsmf.1095
10.1007/s00220-002-0706-3
10.1016/0375-9601(93)90153-Q
ContentType Journal Article
Copyright Springer-Verlag 2008
2009 INIST-CNRS
Copyright_xml – notice: Springer-Verlag 2008
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1007/s00220-008-0663-6
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1432-0916
EndPage 457
ExternalDocumentID 21213537
10_1007_s00220_008_0663_6
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5GY
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFFOW
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
E3Z
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMI
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RBV
REI
RHV
RIG
RNI
RNS
ROL
RPE
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TR2
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
WS9
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z92
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PCBAR
PHGZM
PHGZT
PQGLB
PTHSS
IQODW
ID FETCH-LOGICAL-c318t-1eca42a94084a8cba328f6a46cf12cbe7f1e3d51ce39d253834025ca28f515143
IEDL.DBID RSV
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000263787200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-3616
IngestDate Mon Jul 21 09:17:19 EDT 2025
Sat Nov 29 05:55:12 EST 2025
Tue Nov 18 21:25:59 EST 2025
Fri Feb 21 02:34:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Cell Decomposition
Meromorphic Function
Riemann Surface
Analytic Continuation
Anharmonic Oscillator
Complex function
Eigenvalues
Eigenfunctions
Analytic functions
Analytic continuation
Mathematical physics
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c318t-1eca42a94084a8cba328f6a46cf12cbe7f1e3d51ce39d253834025ca28f515143
PageCount 27
ParticipantIDs pascalfrancis_primary_21213537
crossref_citationtrail_10_1007_s00220_008_0663_6
crossref_primary_10_1007_s00220_008_0663_6
springer_journals_10_1007_s00220_008_0663_6
PublicationCentury 2000
PublicationDate 2009-04-01
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Communications in mathematical physics
PublicationTitleAbbrev Commun. Math. Phys
PublicationYear 2009
Publisher Springer-Verlag
Springer
Publisher_xml – name: Springer-Verlag
– name: Springer
References DelabaereE.PhamF.Unfolding the quartic oscillatorAnn. Physics199726121802180977.3405210.1006/aphy.1997.57371487700
DelabaereE.PhamF.Resurgence de Voros et periodes de curbes hyperelliptiquesAnn. Inst Fourier19934311631990766.340321209700
EremenkoA.GabrielovA.ShapiroB.Zeros of eigenfunctions of some anharmonic oscillatorsAnn. Inst. Fourier2008582603624052983142410384
GunningR.RossiH.Analytic functions of several complex variables1965Englewood Cliffs, HJPrentice-Hall0141.08601
TurbinerA.UshveridzeA.Spectral singularities and the quasi-exactly solvable problemPhys. Lett.1987126 A1811831987PhLA..126..181T921178
DelabaereE.TrinhD.T.Spectral analysis of the complex cubic oscillatorJ. Phys. A200033877187961044.8155510.1088/0305-4470/33/48/3142000JPhA...33.8771D1801468
BochnerS.MartinW.Several Complex Variables1948Princeton, NJPrinceton University Press0041.05205
DelabaereE.DillingerH.PhamF.Exact semiclassical expansions for one-dimensional quantum oscillatorsJ. Math. Phys.19973812612661840896.3405110.1063/1.5322061997JMP....38.6126D1483488
FedoryukM.Asymptotic Analysis1993New YorkSpringer0782.34001
SibuyaY.Global theory of a second order linear ordinary differential equation with a polynomial coefficient1975AmsterdamNorth Holland0322.34006
Simon, B.: The anharmonic oscillator: a singular perturbation theory. In: Cargése Lectures in Physics, Vol. 5, New York: Gordon and Breach, 1972, pp. 383–414
StoïlovS.Leçons sur les principes topologiques de la théorie des fonctions analytiques1956ParisGauthier-Villars
KatoT.Perturbation theory for linear operators1976Berlin-New YorkSpringer-Verlag0342.47009
DelabaereE.PhamF.Resurgent methods in semi-classical asymptotics, Annales de l’InstPoincaré, Sect. A1999711940977.340531704654
BenderC.WuT.Anharmonic oscillatorPhys. Rev. (2)19691841231126010.1103/PhysRev.184.12311969PhRv..184.1231B260323
DoreyP.DunningC.TateoR.Spectral equivalences, Bethe ansatz equations and reality properties in PT-symmetric quantum mechanicsJ. Phys. A200134567957040982.8102110.1088/0305-4470/34/28/3052001JPhA...34.5679D1857169
Loeffel, J., Martin, A.: Propriétés analytiques des niveaux de l’oscillateur anharmonique et convergence des approximants de Pade. In: Cargése Lectures in Physics, Vol. 5, New York: Gordon and Breach, 1972, pp. 415–429
ShinKwang C.Eigenvalues of PT-symmetric oscillators with polynomial potentialsJ. Phys. A200538614761661079.3406310.1088/0305-4470/38/27/0052005JPhA...38.6147S2166739
BakkenI.A multiparameter eigenvalue problem in the complex planeAmer. J. Math.1977995101510440379.3402110.2307/2373998508244
BenderC.TurbinerA.Analytic continuation of eigenvalue problemsPhys. Lett. A1993173644244610.1016/0375-9601(93)90153-Q1993PhLA..173..442B1204365
Shin, Kwang C.: Schrödinger type eigenvalue problems with polynomial potentials: asymptotics of eigenvalues. http://arXiv.org/list/math.SP/0411143v1, 2004
EremenkoA.Exceptional values in holomorphic families of entire functionsMichigan Math. J.20065436876960537379810.1307/mmj/11637899212280501
NevanlinnaR.Über Riemannsche Flächen mit endlich vielen WindungspunktenActa Math.19325829537310.1007/BF025477801555350
Eremenko, A.: Geometric theory of meromorphic functions. In: In the tradition of Ahlfors–Bers III, Contemp. Math. 355, Providence, RI, Amer. Math. Soc., 2004, pp. 221–230. (Expanded version available at http://www.math.purdue.edu/~eremenko/dvi/mich.pdf)
Gurarii, V., Matsaev, V., Ruzmatova, N.: Asymptotic behavior of solutions of second-order ordinary differential equation in the complex domain, and the spectrum of an anharmonic oscillator. In: Analytic methods in probability theory and operator theory, Kiev: Naukova Dumka, 1990, pp. 145–154
LandoS.ZvonkinA.Graphs on surfaces and their applications2004Berlin-Heidelberg-New YorkSpringer1040.05001
SimonB.Large order and summability of eigenvalue perturbation theory: a mathematical overviewIntl. J. Quantum Chem.19822132510.1002/qua.560210103
Nevanlinna, F.: Über eine Klasse meromorpher Funktionen. 7 Congr. Math. Scand., Oslo, 1929
Ahlfors, L.: Lectures on quasiconformal mappings. Second edition, Providence, RI: Amer. Math. Soc., 2007
JuliaG.Sur le domain d’existence d’une fonction implicite définie par une relation entière G(x, y) = 0Bull. Soc. Math. France1926542637JFM 52.0327.051504890
ShinKwang C.On the reality of the eigenvalues for a class of PT-symmetric operatorsCommun. Math. Phys.20022295435641017.3408310.1007/s00220-002-0706-32002CMaPh.229..543S
SimonB.Coupling constant analyticity for the anharmonic oscillatorAnn. Phys.1970587613610.1016/0003-4916(70)90240-X1970AnPhy..58...76S
DrapeE.Über die Darstellung Riemannscher Flächen durch StreckenkomplexeDeutsche Math.19361805824
Ushveridze, A.: Quasi-exactly solvable models in quantum mechanics. Bristol and Philadelphia: Inst. of Phys. Publ., 1994
Goldberg, A., Ostrovskii, I.: Distribution of values of meromorphic functions, Moscow: Nauka, 1970, (in Russian. English translation: Value Distribution of Meromorphic Functions, Providence, RI: Amer. Math. Soc., 2008)
NevanlinnaR.Eindeutige analytische Funktionen1953BerlinSpringer0050.30302
BenderC.BoettcherS.Quasi-exactly solvable quartic potentialJ. Phys. A: Math. Gen.199831L273L2770929.3407410.1088/0305-4470/31/14/0011621102
Kwang C. Shin (663_CR29) 2005; 38
663_CR20
R. Nevanlinna (663_CR27) 1953
E. Delabaere (663_CR7) 1997; 261
S. Lando (663_CR23) 2004
M. Fedoryuk (663_CR17) 1993
663_CR24
Y. Sibuya (663_CR31) 1975
E. Delabaere (663_CR8) 1997; 38
B. Simon (663_CR32) 1970; 58
663_CR25
R. Nevanlinna (663_CR26) 1932; 58
663_CR18
G. Julia (663_CR21) 1926; 54
E. Delabaere (663_CR10) 1999; 71
A. Eremenko (663_CR15) 2006; 54
T. Kato (663_CR22) 1976
S. Bochner (663_CR6) 1948
E. Delabaere (663_CR11) 2000; 33
A. Eremenko (663_CR16) 2008; 58
663_CR1
C. Bender (663_CR3) 1998; 31
B. Simon (663_CR34) 1982; 21
C. Bender (663_CR5) 1969; 184
663_CR33
E. Delabaere (663_CR9) 1993; 43
Kwang C. Shin (663_CR30) 2002; 229
663_CR37
663_CR14
I. Bakken (663_CR2) 1977; 99
663_CR28
C. Bender (663_CR4) 1993; 173
R. Gunning (663_CR19) 1965
A. Turbiner (663_CR36) 1987; 126 A
P. Dorey (663_CR12) 2001; 34
S. Stoïlov (663_CR35) 1956
E. Drape (663_CR13) 1936; 1
References_xml – reference: DelabaereE.PhamF.Unfolding the quartic oscillatorAnn. Physics199726121802180977.3405210.1006/aphy.1997.57371487700
– reference: DrapeE.Über die Darstellung Riemannscher Flächen durch StreckenkomplexeDeutsche Math.19361805824
– reference: ShinKwang C.Eigenvalues of PT-symmetric oscillators with polynomial potentialsJ. Phys. A200538614761661079.3406310.1088/0305-4470/38/27/0052005JPhA...38.6147S2166739
– reference: BakkenI.A multiparameter eigenvalue problem in the complex planeAmer. J. Math.1977995101510440379.3402110.2307/2373998508244
– reference: Nevanlinna, F.: Über eine Klasse meromorpher Funktionen. 7 Congr. Math. Scand., Oslo, 1929
– reference: BenderC.WuT.Anharmonic oscillatorPhys. Rev. (2)19691841231126010.1103/PhysRev.184.12311969PhRv..184.1231B260323
– reference: BenderC.BoettcherS.Quasi-exactly solvable quartic potentialJ. Phys. A: Math. Gen.199831L273L2770929.3407410.1088/0305-4470/31/14/0011621102
– reference: KatoT.Perturbation theory for linear operators1976Berlin-New YorkSpringer-Verlag0342.47009
– reference: BenderC.TurbinerA.Analytic continuation of eigenvalue problemsPhys. Lett. A1993173644244610.1016/0375-9601(93)90153-Q1993PhLA..173..442B1204365
– reference: DelabaereE.PhamF.Resurgent methods in semi-classical asymptotics, Annales de l’InstPoincaré, Sect. A1999711940977.340531704654
– reference: SimonB.Coupling constant analyticity for the anharmonic oscillatorAnn. Phys.1970587613610.1016/0003-4916(70)90240-X1970AnPhy..58...76S
– reference: Eremenko, A.: Geometric theory of meromorphic functions. In: In the tradition of Ahlfors–Bers III, Contemp. Math. 355, Providence, RI, Amer. Math. Soc., 2004, pp. 221–230. (Expanded version available at http://www.math.purdue.edu/~eremenko/dvi/mich.pdf)
– reference: DoreyP.DunningC.TateoR.Spectral equivalences, Bethe ansatz equations and reality properties in PT-symmetric quantum mechanicsJ. Phys. A200134567957040982.8102110.1088/0305-4470/34/28/3052001JPhA...34.5679D1857169
– reference: NevanlinnaR.Über Riemannsche Flächen mit endlich vielen WindungspunktenActa Math.19325829537310.1007/BF025477801555350
– reference: Simon, B.: The anharmonic oscillator: a singular perturbation theory. In: Cargése Lectures in Physics, Vol. 5, New York: Gordon and Breach, 1972, pp. 383–414
– reference: StoïlovS.Leçons sur les principes topologiques de la théorie des fonctions analytiques1956ParisGauthier-Villars
– reference: Ushveridze, A.: Quasi-exactly solvable models in quantum mechanics. Bristol and Philadelphia: Inst. of Phys. Publ., 1994
– reference: TurbinerA.UshveridzeA.Spectral singularities and the quasi-exactly solvable problemPhys. Lett.1987126 A1811831987PhLA..126..181T921178
– reference: EremenkoA.Exceptional values in holomorphic families of entire functionsMichigan Math. J.20065436876960537379810.1307/mmj/11637899212280501
– reference: Goldberg, A., Ostrovskii, I.: Distribution of values of meromorphic functions, Moscow: Nauka, 1970, (in Russian. English translation: Value Distribution of Meromorphic Functions, Providence, RI: Amer. Math. Soc., 2008)
– reference: FedoryukM.Asymptotic Analysis1993New YorkSpringer0782.34001
– reference: JuliaG.Sur le domain d’existence d’une fonction implicite définie par une relation entière G(x, y) = 0Bull. Soc. Math. France1926542637JFM 52.0327.051504890
– reference: Ahlfors, L.: Lectures on quasiconformal mappings. Second edition, Providence, RI: Amer. Math. Soc., 2007
– reference: BochnerS.MartinW.Several Complex Variables1948Princeton, NJPrinceton University Press0041.05205
– reference: DelabaereE.PhamF.Resurgence de Voros et periodes de curbes hyperelliptiquesAnn. Inst Fourier19934311631990766.340321209700
– reference: NevanlinnaR.Eindeutige analytische Funktionen1953BerlinSpringer0050.30302
– reference: DelabaereE.TrinhD.T.Spectral analysis of the complex cubic oscillatorJ. Phys. A200033877187961044.8155510.1088/0305-4470/33/48/3142000JPhA...33.8771D1801468
– reference: Loeffel, J., Martin, A.: Propriétés analytiques des niveaux de l’oscillateur anharmonique et convergence des approximants de Pade. In: Cargése Lectures in Physics, Vol. 5, New York: Gordon and Breach, 1972, pp. 415–429
– reference: ShinKwang C.On the reality of the eigenvalues for a class of PT-symmetric operatorsCommun. Math. Phys.20022295435641017.3408310.1007/s00220-002-0706-32002CMaPh.229..543S
– reference: Gurarii, V., Matsaev, V., Ruzmatova, N.: Asymptotic behavior of solutions of second-order ordinary differential equation in the complex domain, and the spectrum of an anharmonic oscillator. In: Analytic methods in probability theory and operator theory, Kiev: Naukova Dumka, 1990, pp. 145–154
– reference: SimonB.Large order and summability of eigenvalue perturbation theory: a mathematical overviewIntl. J. Quantum Chem.19822132510.1002/qua.560210103
– reference: DelabaereE.DillingerH.PhamF.Exact semiclassical expansions for one-dimensional quantum oscillatorsJ. Math. Phys.19973812612661840896.3405110.1063/1.5322061997JMP....38.6126D1483488
– reference: Shin, Kwang C.: Schrödinger type eigenvalue problems with polynomial potentials: asymptotics of eigenvalues. http://arXiv.org/list/math.SP/0411143v1, 2004
– reference: SibuyaY.Global theory of a second order linear ordinary differential equation with a polynomial coefficient1975AmsterdamNorth Holland0322.34006
– reference: GunningR.RossiH.Analytic functions of several complex variables1965Englewood Cliffs, HJPrentice-Hall0141.08601
– reference: LandoS.ZvonkinA.Graphs on surfaces and their applications2004Berlin-Heidelberg-New YorkSpringer1040.05001
– reference: EremenkoA.GabrielovA.ShapiroB.Zeros of eigenfunctions of some anharmonic oscillatorsAnn. Inst. Fourier2008582603624052983142410384
– volume: 71
  start-page: 1
  year: 1999
  ident: 663_CR10
  publication-title: Poincaré, Sect. A
– volume-title: Eindeutige analytische Funktionen
  year: 1953
  ident: 663_CR27
  doi: 10.1007/978-3-662-06842-7
– volume: 261
  start-page: 180
  issue: 2
  year: 1997
  ident: 663_CR7
  publication-title: Ann. Physics
  doi: 10.1006/aphy.1997.5737
– ident: 663_CR28
– volume: 43
  start-page: 163
  issue: 1
  year: 1993
  ident: 663_CR9
  publication-title: Ann. Inst Fourier
  doi: 10.5802/aif.1326
– ident: 663_CR25
– volume: 58
  start-page: 76
  year: 1970
  ident: 663_CR32
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(70)90240-X
– volume-title: Several Complex Variables
  year: 1948
  ident: 663_CR6
– volume: 31
  start-page: L273
  year: 1998
  ident: 663_CR3
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/31/14/001
– ident: 663_CR1
  doi: 10.1090/ulect/038
– volume-title: Analytic functions of several complex variables
  year: 1965
  ident: 663_CR19
– volume-title: Leçons sur les principes topologiques de la théorie des fonctions analytiques
  year: 1956
  ident: 663_CR35
– volume-title: Perturbation theory for linear operators
  year: 1976
  ident: 663_CR22
  doi: 10.1007/978-3-642-66282-9
– ident: 663_CR37
– volume: 34
  start-page: 5679
  year: 2001
  ident: 663_CR12
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/34/28/305
– volume-title: Asymptotic Analysis
  year: 1993
  ident: 663_CR17
  doi: 10.1007/978-3-642-58016-1
– volume-title: Graphs on surfaces and their applications
  year: 2004
  ident: 663_CR23
  doi: 10.1007/978-3-540-38361-1
– volume: 38
  start-page: 6147
  year: 2005
  ident: 663_CR29
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/38/27/005
– volume: 99
  start-page: 1015
  issue: 5
  year: 1977
  ident: 663_CR2
  publication-title: Amer. J. Math.
  doi: 10.2307/2373998
– volume: 184
  start-page: 1231
  year: 1969
  ident: 663_CR5
  publication-title: Phys. Rev. (2)
  doi: 10.1103/PhysRev.184.1231
– volume: 1
  start-page: 805
  year: 1936
  ident: 663_CR13
  publication-title: Deutsche Math.
– volume: 58
  start-page: 603
  issue: 2
  year: 2008
  ident: 663_CR16
  publication-title: Ann. Inst. Fourier
  doi: 10.5802/aif.2362
– ident: 663_CR20
– volume-title: Global theory of a second order linear ordinary differential equation with a polynomial coefficient
  year: 1975
  ident: 663_CR31
– volume: 58
  start-page: 295
  year: 1932
  ident: 663_CR26
  publication-title: Acta Math.
  doi: 10.1007/BF02547780
– volume: 126 A
  start-page: 181
  year: 1987
  ident: 663_CR36
  publication-title: Phys. Lett.
  doi: 10.1016/0375-9601(87)90456-7
– ident: 663_CR24
– volume: 54
  start-page: 687
  issue: 3
  year: 2006
  ident: 663_CR15
  publication-title: Michigan Math. J.
  doi: 10.1307/mmj/1163789921
– volume: 21
  start-page: 3
  year: 1982
  ident: 663_CR34
  publication-title: Intl. J. Quantum Chem.
  doi: 10.1002/qua.560210103
– volume: 38
  start-page: 6126
  issue: 12
  year: 1997
  ident: 663_CR8
  publication-title: J. Math. Phys.
  doi: 10.1063/1.532206
– volume: 33
  start-page: 8771
  year: 2000
  ident: 663_CR11
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/33/48/314
– ident: 663_CR14
  doi: 10.1090/conm/355/06453
– ident: 663_CR18
– volume: 54
  start-page: 26
  year: 1926
  ident: 663_CR21
  publication-title: Bull. Soc. Math. France
  doi: 10.24033/bsmf.1095
– volume: 229
  start-page: 543
  year: 2002
  ident: 663_CR30
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-002-0706-3
– volume: 173
  start-page: 442
  issue: 6
  year: 1993
  ident: 663_CR4
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(93)90153-Q
– ident: 663_CR33
SSID ssj0009266
Score 2.113295
Snippet We consider the Schrödinger operator on the real line with even quartic potential x 4  +  α x 2 and study analytic continuation of eigenvalues, as functions of...
SourceID pascalfrancis
crossref
springer
SourceType Index Database
Enrichment Source
Publisher
StartPage 431
SubjectTerms Classical and Quantum Gravitation
Complex Systems
Exact sciences and technology
Functions of a complex variable
Mathematical analysis
Mathematical and Computational Physics
Mathematical methods in physics
Mathematical Physics
Mathematics
Other topics in mathematical methods in physics
Partial differential equations
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Sciences and techniques of general use
Several complex variables and analytic spaces
Theoretical
Title Analytic Continuation of Eigenvalues of a Quartic Oscillator
URI https://link.springer.com/article/10.1007/s00220-008-0663-6
Volume 287
WOSCitedRecordID wos000263787200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009266
  issn: 0010-3616
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90KijidCrOj9EHn5RC0qZtCr6IOHzQKX6MvZU0TWAg3Vinf7-X9EOGH6CPCZdQLh936e_udwCnOg6Y8HngilQKl9GIutyT6MhlRGt0r6Wy_3SHt9FgwEej-KHK4y7qaPcakrQ3dZPsZsyNyYLmJmved8NlWEFrx029hsen4SfTrlcClAbl9UMa1lDmd1MsGKPNqShQL7osaPEFGbUGp9_-16duw1blXzqX5YbYgSWVd6Bd-ZpOdZKLDmzcNXyt2FqzgaCy2IULy1KCvY7hrRrnJRO4M9HOteHtNNzgqjBN4dh4UBS8RyuKmwkf73vw0r9-vrpxqwoLrsSzPHepkoJ5ImaEM8FlKnyP61CwUGrqyVRFmio_C6hUfpx5eDf6-NwMpEAp9IPQ1dqHVj7J1QE4MRMx1USTLDBQHRecBESmjOgUZ1NeF0it6kRW9OOmCsZr0hAnW60ltiwmai0Ju3DWDJmW3Bu_CfcW1q8Z4RnSusCPunBeL1ZSndPi5-kO_yR9BOs1ykToMbTmszd1AqvyfT4uZj27Pz8A8Pbc6w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS8MwED90KiridCrOZz_4SSkkbdqm4BcRZeKc4gu_lTRLYCDdWKd_v5f0IcMH6MeESyiXx136u_sdwJGOAyZ8HrgilcJlNKIu9yQ6cn2iNbrXUtl_us_dqNfjLy_xXZnHnVfR7hUkaW_qOtnNmBuTBc1N1rzvhrMwx9BgGcL8-4fnT6ZdrwAoDcrrhzSsoMzvppgyRisjkaNedFHQ4gsyag3OZfNfn7oGq6V_6ZwVG2IdZlTWgmbpazrlSc5bsHxT87Via8EGgsp8A04tSwn2Ooa3apAVTODOUDsXhrfTcIOr3DSFY-NBUfAWrShuJny8b8LT5cXjecctKyy4Es_yxKVKCuaJmBHOBJep8D2uQ8FCqaknUxVpqvx-QKXy476Hd6OPz81ACpRCPwhdrS1oZMNMbYMTMxFTTTTpBwaq44KTgMiUEZ3ibMprA6lUnciSftxUwXhNauJkq7XElsVErSVhG47rIaOCe-M34YOp9atHeIa0LvCjNpxUi5WU5zT_ebqdP0kfwmLn8aabdK9617uwVCFOhO5BYzJ-U_swL98ng3x8YPfqB1SU388
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB50PVDEW1yPtQ8-KWWTNO2m4IvoLorrKnjgW0nTBASpi63-fie9RDxAfEyZhDKZdCb9Zr4B2Dehz6UnfFfGSrqc9qgrmMJALiHGYHitdPFP937YG43Ew0N4XfU5zeps9xqSLGsaLEtTmnfHiek2hW_W9diKaGEr6D03mIQpbvPo7XX95v6DdZeVYKVFfL2ABjWs-d0SnxzTwlhmqCNTNrf4gpIWzmew9O_XXobFKu50jktDWYEJna7CUhWDOtUJz1Zh_rLhccXRTJEgqrI1OCrYS_CpY_msHtOSIdx5Nk7f8nlaznCd2aF0ijxRFLxC74pGhpf6dbgb9G9Pztyq84Kr8IznLtVKciZDTgSXQsXSY8IEkgfKUKZi3TNUe4lPlfbChOE308NrqK8kSmF8hCHYBrTS51RvghNyGVJDDEl8C-EJKYhPVMyJiXE1zdpAarVHqqIlt90xnqKGULnQWlS0y0StRUEbDpop45KT4zfhzqe9bGYwS2bne702HNYbF1XnN_t5ua0_Se_B7PXpIBqejy62Ya4GogjdgVb-8qp3YVq95Y_ZS6cw23fm7eiz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytic+Continuation+of+Eigenvalues+of+a+Quartic+Oscillator&rft.jtitle=Communications+in+mathematical+physics&rft.au=Eremenko%2C+Alexandre&rft.au=Gabrielov%2C+Andrei&rft.date=2009-04-01&rft.issn=0010-3616&rft.eissn=1432-0916&rft.volume=287&rft.issue=2&rft.spage=431&rft.epage=457&rft_id=info:doi/10.1007%2Fs00220-008-0663-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00220_008_0663_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3616&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3616&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3616&client=summon