Analytic Continuation of Eigenvalues of a Quartic Oscillator
We consider the Schrödinger operator on the real line with even quartic potential x 4 + α x 2 and study analytic continuation of eigenvalues, as functions of parameter α . We prove several properties of this analytic continuation conjectured by Bender, Wu, Loeffel and Martin. 1. All eigenvalues ar...
Uložené v:
| Vydané v: | Communications in mathematical physics Ročník 287; číslo 2; s. 431 - 457 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer-Verlag
01.04.2009
Springer |
| Predmet: | |
| ISSN: | 0010-3616, 1432-0916 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We consider the Schrödinger operator on the real line with even quartic potential
x
4
+
α
x
2
and study analytic continuation of eigenvalues, as functions of parameter
α
. We prove several properties of this analytic continuation conjectured by Bender, Wu, Loeffel and Martin. 1. All eigenvalues are given by branches of two multi-valued analytic functions, one for even eigenfunctions and one for odd ones. 2. The only singularities of these multi-valued functions in the complex
α
-plane are algebraic ramification points, and there are only finitely many singularities over each compact subset of the
α
-plane. |
|---|---|
| ISSN: | 0010-3616 1432-0916 |
| DOI: | 10.1007/s00220-008-0663-6 |