Analytic Continuation of Eigenvalues of a Quartic Oscillator

We consider the Schrödinger operator on the real line with even quartic potential x 4  +  α x 2 and study analytic continuation of eigenvalues, as functions of parameter α . We prove several properties of this analytic continuation conjectured by Bender, Wu, Loeffel and Martin. 1. All eigenvalues ar...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications in mathematical physics Ročník 287; číslo 2; s. 431 - 457
Hlavní autori: Eremenko, Alexandre, Gabrielov, Andrei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer-Verlag 01.04.2009
Springer
Predmet:
ISSN:0010-3616, 1432-0916
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider the Schrödinger operator on the real line with even quartic potential x 4  +  α x 2 and study analytic continuation of eigenvalues, as functions of parameter α . We prove several properties of this analytic continuation conjectured by Bender, Wu, Loeffel and Martin. 1. All eigenvalues are given by branches of two multi-valued analytic functions, one for even eigenfunctions and one for odd ones. 2. The only singularities of these multi-valued functions in the complex α -plane are algebraic ramification points, and there are only finitely many singularities over each compact subset of the α -plane.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-008-0663-6