Analytic Continuation of Eigenvalues of a Quartic Oscillator
We consider the Schrödinger operator on the real line with even quartic potential x 4 + α x 2 and study analytic continuation of eigenvalues, as functions of parameter α . We prove several properties of this analytic continuation conjectured by Bender, Wu, Loeffel and Martin. 1. All eigenvalues ar...
Uloženo v:
| Vydáno v: | Communications in mathematical physics Ročník 287; číslo 2; s. 431 - 457 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer-Verlag
01.04.2009
Springer |
| Témata: | |
| ISSN: | 0010-3616, 1432-0916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We consider the Schrödinger operator on the real line with even quartic potential
x
4
+
α
x
2
and study analytic continuation of eigenvalues, as functions of parameter
α
. We prove several properties of this analytic continuation conjectured by Bender, Wu, Loeffel and Martin. 1. All eigenvalues are given by branches of two multi-valued analytic functions, one for even eigenfunctions and one for odd ones. 2. The only singularities of these multi-valued functions in the complex
α
-plane are algebraic ramification points, and there are only finitely many singularities over each compact subset of the
α
-plane. |
|---|---|
| AbstractList | We consider the Schrödinger operator on the real line with even quartic potential
x
4
+
α
x
2
and study analytic continuation of eigenvalues, as functions of parameter
α
. We prove several properties of this analytic continuation conjectured by Bender, Wu, Loeffel and Martin. 1. All eigenvalues are given by branches of two multi-valued analytic functions, one for even eigenfunctions and one for odd ones. 2. The only singularities of these multi-valued functions in the complex
α
-plane are algebraic ramification points, and there are only finitely many singularities over each compact subset of the
α
-plane. |
| Author | Eremenko, Alexandre Gabrielov, Andrei |
| Author_xml | – sequence: 1 givenname: Alexandre surname: Eremenko fullname: Eremenko, Alexandre organization: Department of Mathematics, Purdue University – sequence: 2 givenname: Andrei surname: Gabrielov fullname: Gabrielov, Andrei email: agabriel@math.purdue.edu organization: Department of Mathematics, Purdue University |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21213537$$DView record in Pascal Francis |
| BookMark | eNp9kE1Lw0AQQBepYFv9Ad5y8bg6s5tsEvBSSv2AQhH0vEy3m7IlbspuIvTfmxi9eOhpGHhvYN6MTXzjLWO3CPcIkD9EACGAAxQclJJcXbApplJwKFFN2BQAgUuF6orNYjwAQCmUmrLHhaf61DqTLBvfOt9R6xqfNFWycnvrv6jubBxWSt46CgO4icbVNbVNuGaXFdXR3vzOOft4Wr0vX_h68_y6XKy5kVi0HK2hVFCZQpFSYbYkRVEpSpWpUJitzSu0cpehsbLciUwWMgWRGeqpDLP-izm7G-8eKRqqq0DeuKiPwX1SOGmBAmUm857LR86EJsZgK21c-_NQG8jVGkEPsfQYS_ex9BBLq97Ef-bf8XOOGJ3Ys35vgz40XehzxjPSN8MlfPA |
| CODEN | CMPHAY |
| CitedBy_id | crossref_primary_10_1007_BF03321758 crossref_primary_10_1016_j_physrep_2016_06_002 crossref_primary_10_1088_1751_8121_ac0733 crossref_primary_10_1007_BF03321817 crossref_primary_10_1080_10586458_2017_1325792 crossref_primary_10_1007_BF03321838 crossref_primary_10_1007_s10773_014_2403_3 crossref_primary_10_1088_1751_8113_49_10_105202 crossref_primary_10_1007_s13324_014_0092_y crossref_primary_10_1088_0951_7715_23_10_008 crossref_primary_10_1007_s12220_020_00458_3 crossref_primary_10_3390_sym16050629 crossref_primary_10_1088_1751_8113_44_29_295205 crossref_primary_10_1016_j_aop_2013_12_004 crossref_primary_10_3390_quantum4030022 crossref_primary_10_1007_s00365_013_9185_3 crossref_primary_10_1016_j_aop_2013_05_016 crossref_primary_10_1007_s11005_010_0425_1 crossref_primary_10_1088_1361_6544_abdd93 crossref_primary_10_3390_sym16030353 crossref_primary_10_1088_1751_8113_45_17_175205 crossref_primary_10_3390_math10203721 crossref_primary_10_1080_17476933_2011_592576 crossref_primary_10_1088_1751_8113_45_17_175206 crossref_primary_10_1111_sapm_12134 crossref_primary_10_1007_s00220_012_1559_z crossref_primary_10_1007_s11118_010_9208_7 crossref_primary_10_1007_s11005_009_0366_8 crossref_primary_10_1088_1751_8121_aa5186 |
| Cites_doi | 10.1007/978-3-662-06842-7 10.1006/aphy.1997.5737 10.5802/aif.1326 10.1016/0003-4916(70)90240-X 10.1088/0305-4470/31/14/001 10.1090/ulect/038 10.1007/978-3-642-66282-9 10.1088/0305-4470/34/28/305 10.1007/978-3-642-58016-1 10.1007/978-3-540-38361-1 10.1088/0305-4470/38/27/005 10.2307/2373998 10.1103/PhysRev.184.1231 10.5802/aif.2362 10.1007/BF02547780 10.1016/0375-9601(87)90456-7 10.1307/mmj/1163789921 10.1002/qua.560210103 10.1063/1.532206 10.1088/0305-4470/33/48/314 10.1090/conm/355/06453 10.24033/bsmf.1095 10.1007/s00220-002-0706-3 10.1016/0375-9601(93)90153-Q |
| ContentType | Journal Article |
| Copyright | Springer-Verlag 2008 2009 INIST-CNRS |
| Copyright_xml | – notice: Springer-Verlag 2008 – notice: 2009 INIST-CNRS |
| DBID | AAYXX CITATION IQODW |
| DOI | 10.1007/s00220-008-0663-6 |
| DatabaseName | CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Physics |
| EISSN | 1432-0916 |
| EndPage | 457 |
| ExternalDocumentID | 21213537 10_1007_s00220_008_0663_6 |
| GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 28- 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 41~ 5GY 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIPV ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFFOW AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 E3Z EAD EAP EAS EBLON EBS EIOEI EJD EMI EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RBV REI RHV RIG RNI RNS ROL RPE RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TR2 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 WS9 XJT YLTOR Z45 Z7R Z7S Z7U Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z92 ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2P M7S PCBAR PHGZM PHGZT PQGLB PTHSS IQODW |
| ID | FETCH-LOGICAL-c318t-1eca42a94084a8cba328f6a46cf12cbe7f1e3d51ce39d253834025ca28f515143 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000263787200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-3616 |
| IngestDate | Mon Jul 21 09:17:19 EDT 2025 Sat Nov 29 05:55:12 EST 2025 Tue Nov 18 21:25:59 EST 2025 Fri Feb 21 02:34:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Cell Decomposition Meromorphic Function Riemann Surface Analytic Continuation Anharmonic Oscillator Complex function Eigenvalues Eigenfunctions Analytic functions Analytic continuation Mathematical physics |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c318t-1eca42a94084a8cba328f6a46cf12cbe7f1e3d51ce39d253834025ca28f515143 |
| PageCount | 27 |
| ParticipantIDs | pascalfrancis_primary_21213537 crossref_citationtrail_10_1007_s00220_008_0663_6 crossref_primary_10_1007_s00220_008_0663_6 springer_journals_10_1007_s00220_008_0663_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-04-01 |
| PublicationDateYYYYMMDD | 2009-04-01 |
| PublicationDate_xml | – month: 04 year: 2009 text: 2009-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Communications in mathematical physics |
| PublicationTitleAbbrev | Commun. Math. Phys |
| PublicationYear | 2009 |
| Publisher | Springer-Verlag Springer |
| Publisher_xml | – name: Springer-Verlag – name: Springer |
| References | DelabaereE.PhamF.Unfolding the quartic oscillatorAnn. Physics199726121802180977.3405210.1006/aphy.1997.57371487700 DelabaereE.PhamF.Resurgence de Voros et periodes de curbes hyperelliptiquesAnn. Inst Fourier19934311631990766.340321209700 EremenkoA.GabrielovA.ShapiroB.Zeros of eigenfunctions of some anharmonic oscillatorsAnn. Inst. Fourier2008582603624052983142410384 GunningR.RossiH.Analytic functions of several complex variables1965Englewood Cliffs, HJPrentice-Hall0141.08601 TurbinerA.UshveridzeA.Spectral singularities and the quasi-exactly solvable problemPhys. Lett.1987126 A1811831987PhLA..126..181T921178 DelabaereE.TrinhD.T.Spectral analysis of the complex cubic oscillatorJ. Phys. A200033877187961044.8155510.1088/0305-4470/33/48/3142000JPhA...33.8771D1801468 BochnerS.MartinW.Several Complex Variables1948Princeton, NJPrinceton University Press0041.05205 DelabaereE.DillingerH.PhamF.Exact semiclassical expansions for one-dimensional quantum oscillatorsJ. Math. Phys.19973812612661840896.3405110.1063/1.5322061997JMP....38.6126D1483488 FedoryukM.Asymptotic Analysis1993New YorkSpringer0782.34001 SibuyaY.Global theory of a second order linear ordinary differential equation with a polynomial coefficient1975AmsterdamNorth Holland0322.34006 Simon, B.: The anharmonic oscillator: a singular perturbation theory. In: Cargése Lectures in Physics, Vol. 5, New York: Gordon and Breach, 1972, pp. 383–414 StoïlovS.Leçons sur les principes topologiques de la théorie des fonctions analytiques1956ParisGauthier-Villars KatoT.Perturbation theory for linear operators1976Berlin-New YorkSpringer-Verlag0342.47009 DelabaereE.PhamF.Resurgent methods in semi-classical asymptotics, Annales de l’InstPoincaré, Sect. A1999711940977.340531704654 BenderC.WuT.Anharmonic oscillatorPhys. Rev. (2)19691841231126010.1103/PhysRev.184.12311969PhRv..184.1231B260323 DoreyP.DunningC.TateoR.Spectral equivalences, Bethe ansatz equations and reality properties in PT-symmetric quantum mechanicsJ. Phys. A200134567957040982.8102110.1088/0305-4470/34/28/3052001JPhA...34.5679D1857169 Loeffel, J., Martin, A.: Propriétés analytiques des niveaux de l’oscillateur anharmonique et convergence des approximants de Pade. In: Cargése Lectures in Physics, Vol. 5, New York: Gordon and Breach, 1972, pp. 415–429 ShinKwang C.Eigenvalues of PT-symmetric oscillators with polynomial potentialsJ. Phys. A200538614761661079.3406310.1088/0305-4470/38/27/0052005JPhA...38.6147S2166739 BakkenI.A multiparameter eigenvalue problem in the complex planeAmer. J. Math.1977995101510440379.3402110.2307/2373998508244 BenderC.TurbinerA.Analytic continuation of eigenvalue problemsPhys. Lett. A1993173644244610.1016/0375-9601(93)90153-Q1993PhLA..173..442B1204365 Shin, Kwang C.: Schrödinger type eigenvalue problems with polynomial potentials: asymptotics of eigenvalues. http://arXiv.org/list/math.SP/0411143v1, 2004 EremenkoA.Exceptional values in holomorphic families of entire functionsMichigan Math. J.20065436876960537379810.1307/mmj/11637899212280501 NevanlinnaR.Über Riemannsche Flächen mit endlich vielen WindungspunktenActa Math.19325829537310.1007/BF025477801555350 Eremenko, A.: Geometric theory of meromorphic functions. In: In the tradition of Ahlfors–Bers III, Contemp. Math. 355, Providence, RI, Amer. Math. Soc., 2004, pp. 221–230. (Expanded version available at http://www.math.purdue.edu/~eremenko/dvi/mich.pdf) Gurarii, V., Matsaev, V., Ruzmatova, N.: Asymptotic behavior of solutions of second-order ordinary differential equation in the complex domain, and the spectrum of an anharmonic oscillator. In: Analytic methods in probability theory and operator theory, Kiev: Naukova Dumka, 1990, pp. 145–154 LandoS.ZvonkinA.Graphs on surfaces and their applications2004Berlin-Heidelberg-New YorkSpringer1040.05001 SimonB.Large order and summability of eigenvalue perturbation theory: a mathematical overviewIntl. J. Quantum Chem.19822132510.1002/qua.560210103 Nevanlinna, F.: Über eine Klasse meromorpher Funktionen. 7 Congr. Math. Scand., Oslo, 1929 Ahlfors, L.: Lectures on quasiconformal mappings. Second edition, Providence, RI: Amer. Math. Soc., 2007 JuliaG.Sur le domain d’existence d’une fonction implicite définie par une relation entière G(x, y) = 0Bull. Soc. Math. France1926542637JFM 52.0327.051504890 ShinKwang C.On the reality of the eigenvalues for a class of PT-symmetric operatorsCommun. Math. Phys.20022295435641017.3408310.1007/s00220-002-0706-32002CMaPh.229..543S SimonB.Coupling constant analyticity for the anharmonic oscillatorAnn. Phys.1970587613610.1016/0003-4916(70)90240-X1970AnPhy..58...76S DrapeE.Über die Darstellung Riemannscher Flächen durch StreckenkomplexeDeutsche Math.19361805824 Ushveridze, A.: Quasi-exactly solvable models in quantum mechanics. Bristol and Philadelphia: Inst. of Phys. Publ., 1994 Goldberg, A., Ostrovskii, I.: Distribution of values of meromorphic functions, Moscow: Nauka, 1970, (in Russian. English translation: Value Distribution of Meromorphic Functions, Providence, RI: Amer. Math. Soc., 2008) NevanlinnaR.Eindeutige analytische Funktionen1953BerlinSpringer0050.30302 BenderC.BoettcherS.Quasi-exactly solvable quartic potentialJ. Phys. A: Math. Gen.199831L273L2770929.3407410.1088/0305-4470/31/14/0011621102 Kwang C. Shin (663_CR29) 2005; 38 663_CR20 R. Nevanlinna (663_CR27) 1953 E. Delabaere (663_CR7) 1997; 261 S. Lando (663_CR23) 2004 M. Fedoryuk (663_CR17) 1993 663_CR24 Y. Sibuya (663_CR31) 1975 E. Delabaere (663_CR8) 1997; 38 B. Simon (663_CR32) 1970; 58 663_CR25 R. Nevanlinna (663_CR26) 1932; 58 663_CR18 G. Julia (663_CR21) 1926; 54 E. Delabaere (663_CR10) 1999; 71 A. Eremenko (663_CR15) 2006; 54 T. Kato (663_CR22) 1976 S. Bochner (663_CR6) 1948 E. Delabaere (663_CR11) 2000; 33 A. Eremenko (663_CR16) 2008; 58 663_CR1 C. Bender (663_CR3) 1998; 31 B. Simon (663_CR34) 1982; 21 C. Bender (663_CR5) 1969; 184 663_CR33 E. Delabaere (663_CR9) 1993; 43 Kwang C. Shin (663_CR30) 2002; 229 663_CR37 663_CR14 I. Bakken (663_CR2) 1977; 99 663_CR28 C. Bender (663_CR4) 1993; 173 R. Gunning (663_CR19) 1965 A. Turbiner (663_CR36) 1987; 126 A P. Dorey (663_CR12) 2001; 34 S. Stoïlov (663_CR35) 1956 E. Drape (663_CR13) 1936; 1 |
| References_xml | – reference: DelabaereE.PhamF.Unfolding the quartic oscillatorAnn. Physics199726121802180977.3405210.1006/aphy.1997.57371487700 – reference: DrapeE.Über die Darstellung Riemannscher Flächen durch StreckenkomplexeDeutsche Math.19361805824 – reference: ShinKwang C.Eigenvalues of PT-symmetric oscillators with polynomial potentialsJ. Phys. A200538614761661079.3406310.1088/0305-4470/38/27/0052005JPhA...38.6147S2166739 – reference: BakkenI.A multiparameter eigenvalue problem in the complex planeAmer. J. Math.1977995101510440379.3402110.2307/2373998508244 – reference: Nevanlinna, F.: Über eine Klasse meromorpher Funktionen. 7 Congr. Math. Scand., Oslo, 1929 – reference: BenderC.WuT.Anharmonic oscillatorPhys. Rev. (2)19691841231126010.1103/PhysRev.184.12311969PhRv..184.1231B260323 – reference: BenderC.BoettcherS.Quasi-exactly solvable quartic potentialJ. Phys. A: Math. Gen.199831L273L2770929.3407410.1088/0305-4470/31/14/0011621102 – reference: KatoT.Perturbation theory for linear operators1976Berlin-New YorkSpringer-Verlag0342.47009 – reference: BenderC.TurbinerA.Analytic continuation of eigenvalue problemsPhys. Lett. A1993173644244610.1016/0375-9601(93)90153-Q1993PhLA..173..442B1204365 – reference: DelabaereE.PhamF.Resurgent methods in semi-classical asymptotics, Annales de l’InstPoincaré, Sect. A1999711940977.340531704654 – reference: SimonB.Coupling constant analyticity for the anharmonic oscillatorAnn. Phys.1970587613610.1016/0003-4916(70)90240-X1970AnPhy..58...76S – reference: Eremenko, A.: Geometric theory of meromorphic functions. In: In the tradition of Ahlfors–Bers III, Contemp. Math. 355, Providence, RI, Amer. Math. Soc., 2004, pp. 221–230. (Expanded version available at http://www.math.purdue.edu/~eremenko/dvi/mich.pdf) – reference: DoreyP.DunningC.TateoR.Spectral equivalences, Bethe ansatz equations and reality properties in PT-symmetric quantum mechanicsJ. Phys. A200134567957040982.8102110.1088/0305-4470/34/28/3052001JPhA...34.5679D1857169 – reference: NevanlinnaR.Über Riemannsche Flächen mit endlich vielen WindungspunktenActa Math.19325829537310.1007/BF025477801555350 – reference: Simon, B.: The anharmonic oscillator: a singular perturbation theory. In: Cargése Lectures in Physics, Vol. 5, New York: Gordon and Breach, 1972, pp. 383–414 – reference: StoïlovS.Leçons sur les principes topologiques de la théorie des fonctions analytiques1956ParisGauthier-Villars – reference: Ushveridze, A.: Quasi-exactly solvable models in quantum mechanics. Bristol and Philadelphia: Inst. of Phys. Publ., 1994 – reference: TurbinerA.UshveridzeA.Spectral singularities and the quasi-exactly solvable problemPhys. Lett.1987126 A1811831987PhLA..126..181T921178 – reference: EremenkoA.Exceptional values in holomorphic families of entire functionsMichigan Math. J.20065436876960537379810.1307/mmj/11637899212280501 – reference: Goldberg, A., Ostrovskii, I.: Distribution of values of meromorphic functions, Moscow: Nauka, 1970, (in Russian. English translation: Value Distribution of Meromorphic Functions, Providence, RI: Amer. Math. Soc., 2008) – reference: FedoryukM.Asymptotic Analysis1993New YorkSpringer0782.34001 – reference: JuliaG.Sur le domain d’existence d’une fonction implicite définie par une relation entière G(x, y) = 0Bull. Soc. Math. France1926542637JFM 52.0327.051504890 – reference: Ahlfors, L.: Lectures on quasiconformal mappings. Second edition, Providence, RI: Amer. Math. Soc., 2007 – reference: BochnerS.MartinW.Several Complex Variables1948Princeton, NJPrinceton University Press0041.05205 – reference: DelabaereE.PhamF.Resurgence de Voros et periodes de curbes hyperelliptiquesAnn. Inst Fourier19934311631990766.340321209700 – reference: NevanlinnaR.Eindeutige analytische Funktionen1953BerlinSpringer0050.30302 – reference: DelabaereE.TrinhD.T.Spectral analysis of the complex cubic oscillatorJ. Phys. A200033877187961044.8155510.1088/0305-4470/33/48/3142000JPhA...33.8771D1801468 – reference: Loeffel, J., Martin, A.: Propriétés analytiques des niveaux de l’oscillateur anharmonique et convergence des approximants de Pade. In: Cargése Lectures in Physics, Vol. 5, New York: Gordon and Breach, 1972, pp. 415–429 – reference: ShinKwang C.On the reality of the eigenvalues for a class of PT-symmetric operatorsCommun. Math. Phys.20022295435641017.3408310.1007/s00220-002-0706-32002CMaPh.229..543S – reference: Gurarii, V., Matsaev, V., Ruzmatova, N.: Asymptotic behavior of solutions of second-order ordinary differential equation in the complex domain, and the spectrum of an anharmonic oscillator. In: Analytic methods in probability theory and operator theory, Kiev: Naukova Dumka, 1990, pp. 145–154 – reference: SimonB.Large order and summability of eigenvalue perturbation theory: a mathematical overviewIntl. J. Quantum Chem.19822132510.1002/qua.560210103 – reference: DelabaereE.DillingerH.PhamF.Exact semiclassical expansions for one-dimensional quantum oscillatorsJ. Math. Phys.19973812612661840896.3405110.1063/1.5322061997JMP....38.6126D1483488 – reference: Shin, Kwang C.: Schrödinger type eigenvalue problems with polynomial potentials: asymptotics of eigenvalues. http://arXiv.org/list/math.SP/0411143v1, 2004 – reference: SibuyaY.Global theory of a second order linear ordinary differential equation with a polynomial coefficient1975AmsterdamNorth Holland0322.34006 – reference: GunningR.RossiH.Analytic functions of several complex variables1965Englewood Cliffs, HJPrentice-Hall0141.08601 – reference: LandoS.ZvonkinA.Graphs on surfaces and their applications2004Berlin-Heidelberg-New YorkSpringer1040.05001 – reference: EremenkoA.GabrielovA.ShapiroB.Zeros of eigenfunctions of some anharmonic oscillatorsAnn. Inst. Fourier2008582603624052983142410384 – volume: 71 start-page: 1 year: 1999 ident: 663_CR10 publication-title: Poincaré, Sect. A – volume-title: Eindeutige analytische Funktionen year: 1953 ident: 663_CR27 doi: 10.1007/978-3-662-06842-7 – volume: 261 start-page: 180 issue: 2 year: 1997 ident: 663_CR7 publication-title: Ann. Physics doi: 10.1006/aphy.1997.5737 – ident: 663_CR28 – volume: 43 start-page: 163 issue: 1 year: 1993 ident: 663_CR9 publication-title: Ann. Inst Fourier doi: 10.5802/aif.1326 – ident: 663_CR25 – volume: 58 start-page: 76 year: 1970 ident: 663_CR32 publication-title: Ann. Phys. doi: 10.1016/0003-4916(70)90240-X – volume-title: Several Complex Variables year: 1948 ident: 663_CR6 – volume: 31 start-page: L273 year: 1998 ident: 663_CR3 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/31/14/001 – ident: 663_CR1 doi: 10.1090/ulect/038 – volume-title: Analytic functions of several complex variables year: 1965 ident: 663_CR19 – volume-title: Leçons sur les principes topologiques de la théorie des fonctions analytiques year: 1956 ident: 663_CR35 – volume-title: Perturbation theory for linear operators year: 1976 ident: 663_CR22 doi: 10.1007/978-3-642-66282-9 – ident: 663_CR37 – volume: 34 start-page: 5679 year: 2001 ident: 663_CR12 publication-title: J. Phys. A doi: 10.1088/0305-4470/34/28/305 – volume-title: Asymptotic Analysis year: 1993 ident: 663_CR17 doi: 10.1007/978-3-642-58016-1 – volume-title: Graphs on surfaces and their applications year: 2004 ident: 663_CR23 doi: 10.1007/978-3-540-38361-1 – volume: 38 start-page: 6147 year: 2005 ident: 663_CR29 publication-title: J. Phys. A doi: 10.1088/0305-4470/38/27/005 – volume: 99 start-page: 1015 issue: 5 year: 1977 ident: 663_CR2 publication-title: Amer. J. Math. doi: 10.2307/2373998 – volume: 184 start-page: 1231 year: 1969 ident: 663_CR5 publication-title: Phys. Rev. (2) doi: 10.1103/PhysRev.184.1231 – volume: 1 start-page: 805 year: 1936 ident: 663_CR13 publication-title: Deutsche Math. – volume: 58 start-page: 603 issue: 2 year: 2008 ident: 663_CR16 publication-title: Ann. Inst. Fourier doi: 10.5802/aif.2362 – ident: 663_CR20 – volume-title: Global theory of a second order linear ordinary differential equation with a polynomial coefficient year: 1975 ident: 663_CR31 – volume: 58 start-page: 295 year: 1932 ident: 663_CR26 publication-title: Acta Math. doi: 10.1007/BF02547780 – volume: 126 A start-page: 181 year: 1987 ident: 663_CR36 publication-title: Phys. Lett. doi: 10.1016/0375-9601(87)90456-7 – ident: 663_CR24 – volume: 54 start-page: 687 issue: 3 year: 2006 ident: 663_CR15 publication-title: Michigan Math. J. doi: 10.1307/mmj/1163789921 – volume: 21 start-page: 3 year: 1982 ident: 663_CR34 publication-title: Intl. J. Quantum Chem. doi: 10.1002/qua.560210103 – volume: 38 start-page: 6126 issue: 12 year: 1997 ident: 663_CR8 publication-title: J. Math. Phys. doi: 10.1063/1.532206 – volume: 33 start-page: 8771 year: 2000 ident: 663_CR11 publication-title: J. Phys. A doi: 10.1088/0305-4470/33/48/314 – ident: 663_CR14 doi: 10.1090/conm/355/06453 – ident: 663_CR18 – volume: 54 start-page: 26 year: 1926 ident: 663_CR21 publication-title: Bull. Soc. Math. France doi: 10.24033/bsmf.1095 – volume: 229 start-page: 543 year: 2002 ident: 663_CR30 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-002-0706-3 – volume: 173 start-page: 442 issue: 6 year: 1993 ident: 663_CR4 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(93)90153-Q – ident: 663_CR33 |
| SSID | ssj0009266 |
| Score | 2.1133986 |
| Snippet | We consider the Schrödinger operator on the real line with even quartic potential
x
4
+
α
x
2
and study analytic continuation of eigenvalues, as functions of... |
| SourceID | pascalfrancis crossref springer |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 431 |
| SubjectTerms | Classical and Quantum Gravitation Complex Systems Exact sciences and technology Functions of a complex variable Mathematical analysis Mathematical and Computational Physics Mathematical methods in physics Mathematical Physics Mathematics Other topics in mathematical methods in physics Partial differential equations Physics Physics and Astronomy Quantum Physics Relativity Theory Sciences and techniques of general use Several complex variables and analytic spaces Theoretical |
| Title | Analytic Continuation of Eigenvalues of a Quartic Oscillator |
| URI | https://link.springer.com/article/10.1007/s00220-008-0663-6 |
| Volume | 287 |
| WOSCitedRecordID | wos000263787200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1432-0916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009266 issn: 0010-3616 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60KihiPbEeZR98UhY2m802AV9EWnyxihd9W7LZBAqyLd3q73eSPaR4gD5mmYRljsyEmfkG4IxyVBOWSp9llPpRpNGkeob4eBUGWhtjez_dsInecMhHI3Ff9XEXdbV7nZJ0N3XT7Gbdje2C5rZrnvrxMqygt-N2XsPD48sn0m5YJihtlpfGJK5Tmd8dseCMNqeyQL6YcqDFl8yocziD9r9-dRu2qvjSuyoVYgeWdL4L7SrW9CpLLnZh47bBa8XVmisEVcUeXDqUEvzqWdyqcV4igXsT4_UtbqfFBteFXUrP1YMi4R16UVQmfLzvw_Og_3R941cTFnyFtjz3iVYyCqWIAh5JrlJJQ25iGcXKkFClGqWmacaI0lRkId6NFJ-bTEmkwjgIQ60DaOWTXB-Cl0oupMioEVxFRJFUhCyTAWP4JMNzRQeCmtWJquDH7RSM16QBTnZcS9xYTORaEnfgvNkyLbE3fiPuLsiv2RFa0DpGex24qIWVVHZa_Hzc0Z-oj2G9zjIF5ARa89mbPoVV9T4fF7Ou088PZrTccw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90KiridCrOj9kHn5RC07RdCr6IbEzcpuiUvZU0TWAg21inf7-X9EOGH6CPKZdQ7iN34e5-B3BOGaqJH3PbTyi1PU-iSTUVsfEqdKRUSvd-mmETzX6fDYfhQ97HnRbV7kVK0tzUZbObdje6C5rprnlqB8uw4qHD0oD5j08vn0i7bpag1FleGpCgSGV-d8SCM9qa8hT5orKBFl8yo8bhtKv_-tUd2M7jS-s6U4hdWJLjGlTzWNPKLTmtwWavxGvF1ZopBBXpHlwZlBL8amncqtE4QwK3JspqadxOjQ0uU73klqkHRcJ79KKoTPh434fndmtw07HzCQu2QFue20QK7rk89BzmcSZiTl2mAu4FQhFXxBKlJmniEyFpmLh4N1J8bvqCIxXGQRhqHUBlPBnLQ7BizkIeJlSFTHhEkDh0_YQ7vo9PMjw3rINTsDoSOfy4noLxGpXAyYZrkRmLiVyLgjpclFumGfbGb8SNBfmVO1wNWufTZh0uC2FFuZ2mPx939CfqM1jvDHrdqHvbvzuGjSLj5JATqMxnb_IUVsX7fJTOGkZXPwDEo99X |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rS8MwED90PlDE6VScj9kPflLKmqbpGvCL6IaizoEP_FbSNIGBdGOd_v1e-pLhA8SPKZdQLne5O-7udwDHNEAxYZGwWUyp7XkKVaqjiY1PoaOU1qb3Mxs20en3g5cXPijmnKZltXuZksx7GgxKUzJtj2PdrhrfjOkxHdGB6aCntj8PC56pozfh-sPzJ-qumycrTcaX-sQv05rfHTFjmNbGIkUe6Xy4xZcsaWZ8evV___YGrBd-p3WeC8omzKmkAfXCB7UKDU8bsHpX4bjiaikrEJXpFpxl6CX41TJ4VsMkRwi3RtrqGjxPgxmuUrMUVlYnioT3aF1RyDCo34anXvfx4souJi_YEnV8ahMlhecK7jmBJwIZCeoG2heeLzVxZaTwNhWNGZGK8tjFN5NiGMqkQCr0j9AF24FaMkrULliRCLjgMdU8kB6RJOIui4XDGIZqeC5vglOyPZQFLLmZjvEaVoDKGdfCbFwmci30m3BSbRnnmBy_Ebdm7rLa4RowO0Y7TTgtLy4s9Df9-bi9P1EfwfLgshfeXvdv9mGlTEQ55ABq08mbOoRF-T4dppNWJrYfSkvoOw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytic+Continuation+of+Eigenvalues+of+a+Quartic+Oscillator&rft.jtitle=Communications+in+mathematical+physics&rft.au=Eremenko%2C+Alexandre&rft.au=Gabrielov%2C+Andrei&rft.date=2009-04-01&rft.pub=Springer-Verlag&rft.issn=0010-3616&rft.eissn=1432-0916&rft.volume=287&rft.issue=2&rft.spage=431&rft.epage=457&rft_id=info:doi/10.1007%2Fs00220-008-0663-6&rft.externalDocID=10_1007_s00220_008_0663_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3616&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3616&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3616&client=summon |