Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model

We consider Hermitian and symmetric random band matrices H in d ≥ 1 dimensions. The matrix elements H xy , indexed by , are independent, uniformly distributed random variables if is less than the band width W , and zero otherwise. We prove that the time evolution of a quantum particle subject to the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications in mathematical physics Ročník 303; číslo 2; s. 509 - 554
Hlavní autori: Erdős, László, Knowles, Antti
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer-Verlag 01.04.2011
Springer
Predmet:
ISSN:0010-3616, 1432-0916
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider Hermitian and symmetric random band matrices H in d ≥ 1 dimensions. The matrix elements H xy , indexed by , are independent, uniformly distributed random variables if is less than the band width W , and zero otherwise. We prove that the time evolution of a quantum particle subject to the Hamiltonian H is diffusive on time scales . We also show that the localization length of the eigenvectors of H is larger than a factor W d /6 times the band width. All results are uniform in the size of the matrix.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-011-1204-2