Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model
We consider Hermitian and symmetric random band matrices H in d ≥ 1 dimensions. The matrix elements H xy , indexed by , are independent, uniformly distributed random variables if is less than the band width W , and zero otherwise. We prove that the time evolution of a quantum particle subject to the...
Uloženo v:
| Vydáno v: | Communications in mathematical physics Ročník 303; číslo 2; s. 509 - 554 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer-Verlag
01.04.2011
Springer |
| Témata: | |
| ISSN: | 0010-3616, 1432-0916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider Hermitian and symmetric random band matrices
H
in
d
≥ 1 dimensions. The matrix elements
H
xy
, indexed by
, are independent, uniformly distributed random variables if
is less than the band width
W
, and zero otherwise. We prove that the time evolution of a quantum particle subject to the Hamiltonian
H
is diffusive on time scales
. We also show that the localization length of the eigenvectors of
H
is larger than a factor
W
d
/6
times the band width. All results are uniform in the size
of the matrix. |
|---|---|
| ISSN: | 0010-3616 1432-0916 |
| DOI: | 10.1007/s00220-011-1204-2 |