Wavelet-based multilevel methods for linear ill-posed problems
The representation of linear operator equations in terms of wavelet bases yields a multilevel framework, which can be exploited for iterative solution. This paper describes cascadic multilevel methods that employ conjugate gradient-type methods on each level. The iterations are on each level termina...
Uložené v:
| Vydané v: | BIT (Nordisk Tidskrift for Informationsbehandling) Ročník 51; číslo 3; s. 669 - 694 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.09.2011
Springer |
| Predmet: | |
| ISSN: | 0006-3835, 1572-9125 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The representation of linear operator equations in terms of wavelet bases yields a multilevel framework, which can be exploited for iterative solution. This paper describes cascadic multilevel methods that employ conjugate gradient-type methods on each level. The iterations are on each level terminated by a stopping rule based on the discrepancy principle. |
|---|---|
| ISSN: | 0006-3835 1572-9125 |
| DOI: | 10.1007/s10543-011-0320-x |