Asymptotics and numerics of polynomials used in Tricomi and Buchholz expansions of Kummer functions

Expansions in terms of Bessel functions are considered of the Kummer function 1 F 1 ( a ; c , z ) (or confluent hypergeometric function) as given by Tricomi and Buchholz. The coefficients of these expansions are polynomials in the parameters of the Kummer function and the asymptotic behavior of thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik Jg. 116; H. 2; S. 269 - 289
Hauptverfasser: López, José Luis, Temme, Nico M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer-Verlag 01.08.2010
Springer
Schlagworte:
ISSN:0029-599X, 0945-3245
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Expansions in terms of Bessel functions are considered of the Kummer function 1 F 1 ( a ; c , z ) (or confluent hypergeometric function) as given by Tricomi and Buchholz. The coefficients of these expansions are polynomials in the parameters of the Kummer function and the asymptotic behavior of these polynomials for large degree is given. Tables are given to show the rate of approximation of the asymptotic estimates. The numerical performance of the expansions is discussed together with the numerical stability of recurrence relations to compute the polynomials. The asymptotic character of the expansions is explained for large values of the parameter a of the Kummer function.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-010-0303-x