Dispersionless integrable hierarchies and GL(2, ℝ) geometry

Paraconformal or GL(2, ℝ) geometry on an n-dimensional manifold M is defined by a field of rational normal curves of degree n – 1 in the projectivised cotangent bundle ℙT*M. Such geometry is known to arise on solution spaces of ODEs with vanishing Wünschmann (Doubrov–Wilczynski) invariants. In this...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical proceedings of the Cambridge Philosophical Society Ročník 170; číslo 1; s. 129 - 154
Hlavní autoři: FERAPONTOV, EVGENY, KRUGLIKOV, BORIS
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.01.2021
Témata:
ISSN:0305-0041, 1469-8064
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Paraconformal or GL(2, ℝ) geometry on an n-dimensional manifold M is defined by a field of rational normal curves of degree n – 1 in the projectivised cotangent bundle ℙT*M. Such geometry is known to arise on solution spaces of ODEs with vanishing Wünschmann (Doubrov–Wilczynski) invariants. In this paper we discuss yet another natural source of GL(2, ℝ) structures, namely dispersionless integrable hierarchies of PDEs such as the dispersionless Kadomtsev–Petviashvili (dKP) hierarchy. In the latter context, GL(2, ℝ) structures coincide with the characteristic variety (principal symbol) of the hierarchy. Dispersionless hierarchies provide explicit examples of particularly interesting classes of involutive GL(2, ℝ) structures studied in the literature. Thus, we obtain torsion-free GL(2, ℝ) structures of Bryant [5] that appeared in the context of exotic holonomy in dimension four, as well as totally geodesic GL(2, ℝ) structures of Krynski [33]. The latter possess a compatible affine connection (with torsion) and a two-parameter family of totally geodesic α-manifolds (coming from the dispersionless Lax equations), which makes them a natural generalisation of the Einstein–Weyl geometry. Our main result states that involutive GL(2, ℝ) structures are governed by a dispersionless integrable system whose general local solution depends on 2n – 4 arbitrary functions of 3 variables. This establishes integrability of the system of Wünschmann conditions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004119000355