Rician Noise Reduction by Combining Mathematical Morphological Operators through Genetic Programming

We propose a genetic programming (GP)-based approach for noise reduction from magnetic resonance imaging (MRI). An optimal composite morphological supervised filter ( F ocmsf ) is developed through a certain number of generations by combining gray-scale mathematical morphological (MM) operators unde...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optical review Ročník 20; číslo 4; s. 289 - 292
Hlavní autoři: Sharif, Muhammad, Jaffar, Muhammad Arfan, Mahmood, Muhammad Tariq
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tokyo Springer Japan 01.07.2013
Témata:
ISSN:1340-6000, 1349-9432
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a genetic programming (GP)-based approach for noise reduction from magnetic resonance imaging (MRI). An optimal composite morphological supervised filter ( F ocmsf ) is developed through a certain number of generations by combining gray-scale mathematical morphological (MM) operators under a fitness criterion. The proposed method does not need any prior information about the noise variance. The improved performance of the developed filter is investigated using simulated and real MRI datasets. Comparative analysis demonstrates the superiority of the proposed GP-based scheme over the existing approaches.
ISSN:1340-6000
1349-9432
DOI:10.1007/s10043-013-0052-z