Rician Noise Reduction by Combining Mathematical Morphological Operators through Genetic Programming

We propose a genetic programming (GP)-based approach for noise reduction from magnetic resonance imaging (MRI). An optimal composite morphological supervised filter ( F ocmsf ) is developed through a certain number of generations by combining gray-scale mathematical morphological (MM) operators unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical review Jg. 20; H. 4; S. 289 - 292
Hauptverfasser: Sharif, Muhammad, Jaffar, Muhammad Arfan, Mahmood, Muhammad Tariq
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Tokyo Springer Japan 01.07.2013
Schlagworte:
ISSN:1340-6000, 1349-9432
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a genetic programming (GP)-based approach for noise reduction from magnetic resonance imaging (MRI). An optimal composite morphological supervised filter ( F ocmsf ) is developed through a certain number of generations by combining gray-scale mathematical morphological (MM) operators under a fitness criterion. The proposed method does not need any prior information about the noise variance. The improved performance of the developed filter is investigated using simulated and real MRI datasets. Comparative analysis demonstrates the superiority of the proposed GP-based scheme over the existing approaches.
ISSN:1340-6000
1349-9432
DOI:10.1007/s10043-013-0052-z