Group actions on local moduli space of holomorphic vector bundles

We prove that actions of complex reductive Lie groups on a holomorphic vector bundle over a complex compact manifold are locally extendable to its local moduli space.

Saved in:
Bibliographic Details
Published in:Canadian mathematical bulletin Vol. 66; no. 2; pp. 553 - 567
Main Author: Doan, An-Khuong
Format: Journal Article
Language:English
Published: Canada Canadian Mathematical Society 01.06.2023
Cambridge University Press
Subjects:
ISSN:0008-4395, 1496-4287
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We prove that actions of complex reductive Lie groups on a holomorphic vector bundle over a complex compact manifold are locally extendable to its local moduli space.
AbstractList We prove that actions of complex reductive Lie groups on a holomorphic vector bundle over a complex compact manifold are locally extendable to its local moduli space.
Author Doan, An-Khuong
Author_xml – sequence: 1
  givenname: An-Khuong
  orcidid: 0000-0002-0565-6549
  surname: Doan
  fullname: Doan, An-Khuong
  email: an-khuong.doan@imj-prg.fr
  organization: IMJ-PRG, UMR 7586, Sorbonne Université, Case 247, 4 place Jussieu, 75252 Paris Cedex 05, France
BookMark eNp9kEtLAzEQx4NUsK1-AG8Bz6t57SPHUrQVCh7U85LNw6ZkN2uyK_jtzdKCoOgcZgb-85vXAsw632kArjG6ZTind88IoYpRnhOSsuTPwBwzXmSMVOUMzCc5m_QLsIjxgBAu8zKfg9Um-LGHQg7WdxH6DjovhYOtV6OzMPZCaugN3HvnWx_6vZXwQ8vBB9iMnXI6XoJzI1zUV6e4BK8P9y_rbbZ72jyuV7tMUlwOmZCcVEoSUhiGFGoKrIgxKhdUcsGM4gWhgudSGyk0lajSqlG4InmDkU5Gl-Dm2LcP_n3UcagPfgxdGlmTCnGWzuEsVZXHKhl8jEGbWtpBTMcNQVhXY1RP_6p__SuR-AfZB9uK8PkvQ0-MaJtg1Zv-Xupv6gtW834z
CitedBy_id crossref_primary_10_1007_s13348_024_00450_y
Cites_doi 10.1007/s12220-020-00411-4
10.1007/BF01404124
10.1007/s00229-002-0337-1
10.1007/s13373-015-0070-1
10.1016/S0022-4049(00)00121-3
10.1016/j.aim.2009.12.009
10.1090/S0002-9947-1968-0217093-3
10.1007/s00229-021-01289-4
10.1016/j.geomphys.2021.104237
10.1007/b138372
10.2977/prims/1195173613
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8FQ
8FV
ABJCF
ABUWG
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.4153/S0008439522000522
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Canadian Business & Current Affairs Database
Canadian Business & Current Affairs Database (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
CBCA Complete (Alumni Edition)
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
CBCA Complete
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Engineering Collection
DatabaseTitleList Engineering Database

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1496-4287
EndPage 567
ExternalDocumentID 10_4153_S0008439522000522
GroupedDBID --Z
-~X
09C
09E
5.9
69Q
6J9
8FQ
AABWE
AAEED
AAGFV
AANRG
AASVR
AAUKB
AAYEQ
AAYJJ
ABBZL
ABCQX
ABGDZ
ABJCF
ABMYL
ABUWG
ABXAU
ABZCX
ABZEH
ACGFO
ACIPV
ACKIV
ACNCT
ACQFJ
ACYZP
ACZWT
ADDNB
ADGEJ
ADKIL
ADOCW
ADOVH
ADVJH
AEBAK
AEBPU
AENCP
AETEA
AFKQG
AFKRA
AFLVW
AGABE
AGBYD
AGJUD
AGOOT
AHRGI
AI.
AIDBO
AIOIP
AJCYY
AJPFC
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARZZG
ATUCA
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BGLVJ
BLZWO
CCPQU
CCQAD
CCUQV
CFBFF
CGQII
CHEAL
CJCSC
DOHLZ
DWQXO
EBS
EGQIC
EJD
FRP
HCIFZ
HF~
IH6
IOO
JHPGK
KCGVB
KFECR
L7B
LW7
M7S
MVM
NZEOI
OHT
OK1
P2P
PTHSS
RCA
RCD
ROL
S10
TR2
UPT
VH1
WFFJZ
WH7
XJT
ZCG
ZMEZD
0R~
AAXMD
AAYXX
ABUFD
ABVKB
ABVZP
ABXHF
ACDLN
ADIYS
AFFHD
AFZFC
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
ID FETCH-LOGICAL-c317t-ac928dc226f40d0b61d2ffd5a3c9a4fd9623a95cefcae3c08edbd1825b10eeee3
IEDL.DBID BENPR
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852890200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0008-4395
IngestDate Fri Jul 25 12:01:38 EDT 2025
Sat Nov 29 05:31:07 EST 2025
Tue Nov 18 22:05:04 EST 2025
Wed Mar 13 05:49:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 14B10
Deformation theory
moduli theory
equivariance structure
semi-universality
32G05
14D15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-ac928dc226f40d0b61d2ffd5a3c9a4fd9623a95cefcae3c08edbd1825b10eeee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0565-6549
PQID 2809457594
PQPubID 4573633
PageCount 15
ParticipantIDs proquest_journals_2809457594
crossref_citationtrail_10_4153_S0008439522000522
crossref_primary_10_4153_S0008439522000522
cambridge_journals_10_4153_S0008439522000522
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Montreal
PublicationTitle Canadian mathematical bulletin
PublicationTitleAlternate Can. Math. Bull
PublicationYear 2023
Publisher Canadian Mathematical Society
Cambridge University Press
Publisher_xml – name: Canadian Mathematical Society
– name: Cambridge University Press
References 2022; 167
2001; 162
2015; 5
2021; 31
1968; 130
1989; 25
2010; 224
2003; 110
1972; 15
1980; 257
S0008439522000522_r1
Rim (S0008439522000522_r18) 1980; 257
S0008439522000522_r3
S0008439522000522_r4
S0008439522000522_r5
S0008439522000522_r6
S0008439522000522_r14
S0008439522000522_r7
S0008439522000522_r15
S0008439522000522_r9
S0008439522000522_r16
S0008439522000522_r17
S0008439522000522_r19
Catanese (S0008439522000522_r2) 2013
Kuranishi (S0008439522000522_r13) 1971
S0008439522000522_r20
S0008439522000522_r10
S0008439522000522_r11
S0008439522000522_r12
Douady (S0008439522000522_r8) 1964
References_xml – volume: 25
  start-page: 301
  year: 1989
  end-page: 320
  article-title: Kuranishi family of vector bundles and algebraic description of the moduli space of Einstein–Hermitian connections
  publication-title: Publ. Res. Inst. Math. Sci.
– volume: 224
  start-page: 772
  issue: 3
  year: 2010
  end-page: 826
  article-title: Unifying derived deformation theories
  publication-title: Adv. Math.
– volume: 5
  start-page: 287
  year: 2015
  end-page: 449
  article-title: Topological methods in moduli theory
  publication-title: Bull. Math. Sci.
– volume: 31
  start-page: 3698
  year: 2021
  end-page: 3712
  article-title: A counter-example to the equivariance structure on semi-universal deformation
  publication-title: J. Geom. Anal.
– volume: 15
  start-page: 171
  year: 1972
  end-page: 198
  article-title: Über die deformation isolierter Singularitäten analytischer Mengen
  publication-title: Invent. Math.
– volume: 130
  start-page: 208
  issue: 2
  year: 1968
  end-page: 222
  article-title: Functors of Artin rings
  publication-title: Trans. Amer. Math. Soc.
– volume: 167
  start-page: 793
  year: 2022
  end-page: 808
  article-title: Equivariant Kuranishi family of complex compact manifolds
  publication-title: Manuscripta Math.
– volume: 257
  start-page: 217
  issue: 1
  year: 1980
  end-page: 226
  article-title: Equivariant $G$ -structure on versal deformations
  publication-title: Trans. Amer. Math. Soc.
– volume: 162
  start-page: 209
  issue: 2–3
  year: 2001
  end-page: 250
  article-title: DG coalgebras as formal stacks
  publication-title: J. Pure Appl. Algebra
– volume: 110
  start-page: 237
  year: 2003
  end-page: 249
  article-title: Local moduli spaces and Kuranishi maps
  publication-title: Manuscripta Math.
– start-page: 161
  volume-title: Handbook of moduli
  year: 2013
  ident: S0008439522000522_r2
– ident: S0008439522000522_r4
  doi: 10.1007/s12220-020-00411-4
– ident: S0008439522000522_r9
  doi: 10.1007/BF01404124
– ident: S0008439522000522_r15
– ident: S0008439522000522_r12
  doi: 10.1007/s00229-002-0337-1
– ident: S0008439522000522_r3
  doi: 10.1007/s13373-015-0070-1
– ident: S0008439522000522_r10
  doi: 10.1016/S0022-4049(00)00121-3
– ident: S0008439522000522_r17
  doi: 10.1016/j.aim.2009.12.009
– ident: S0008439522000522_r14
– ident: S0008439522000522_r19
  doi: 10.1090/S0002-9947-1968-0217093-3
– ident: S0008439522000522_r5
– ident: S0008439522000522_r7
  doi: 10.1007/s00229-021-01289-4
– ident: S0008439522000522_r6
– volume-title: Deformations of compact complex manifolds
  year: 1971
  ident: S0008439522000522_r13
– ident: S0008439522000522_r1
  doi: 10.1016/j.geomphys.2021.104237
– ident: S0008439522000522_r11
  doi: 10.1007/b138372
– volume: 257
  start-page: 217
  year: 1980
  ident: S0008439522000522_r18
  article-title: Equivariant $G$ -structure on versal deformations
  publication-title: Trans. Amer. Math. Soc.
– ident: S0008439522000522_r16
  doi: 10.2977/prims/1195173613
– ident: S0008439522000522_r20
– start-page: 7
  volume-title: Séminaire Bourbaki
  year: 1964
  ident: S0008439522000522_r8
SSID ssj0017575
Score 2.2887928
Snippet We prove that actions of complex reductive Lie groups on a holomorphic vector bundle over a complex compact manifold are locally extendable to its local moduli...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 553
SubjectTerms Lie groups
Mathematical analysis
Title Group actions on local moduli space of holomorphic vector bundles
URI https://www.cambridge.org/core/product/identifier/S0008439522000522/type/journal_article
https://www.proquest.com/docview/2809457594
Volume 66
WOSCitedRecordID wos000852890200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Canadian Business & Current Affairs Database
  customDbUrl:
  eissn: 1496-4287
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017575
  issn: 0008-4395
  databaseCode: 8FQ
  dateStart: 20190301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/cbcacomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1496-4287
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017575
  issn: 0008-4395
  databaseCode: M7S
  dateStart: 20190301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1496-4287
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017575
  issn: 0008-4395
  databaseCode: BENPR
  dateStart: 20190301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oeNCDbyOKZA-ejBuXPrcngwbiRYKvhFvT7iMhgRYp8PudbUuRmHCxx3Y32exsZ7557HwAtwKVIuIGRmOE39SxNKPoZymqIt9Rvqe5ZFFONuH3-3w4DAZlwC0ryypXOjFX1DIVJkb-YHF0RAybpPM4_aaGNcpkV0sKjV2om05lTg3qT93-4L3KI_iuX3AYME7R9LpFXhONlm3uCDNu3llWnu-yfndX2LRSm0o6tzy9o_-u-RgOS8xJOsUhOYEdlZzCwWvVsDU7g04egyLFLYeMpAnJjRyZpHIxHhFUO0KRVBOjKycpymYkyDIP-JN4Yfo0ZOfw1et-Pr_Qkl2BCsQMcxqJwOJSIPzSDpMs9trS0lq6kS2CyNEyQGAUBa5QWkTKFowrGUv0Rty4zRQ-9gXUkjRRl0BQSUnbVx7OVE6scajHVMCUE0llMFwD7qudDct_JAvR_TCCCP8IogFstfmhKDuVG8KM8bYpd9WUadGmY9vg5kpc69WsZXW1_fM17BvK-aJcrAm1-WyhbmBPLOejbNaCXd57a5XHsGUqST9-ADek4RU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB50FdSDb_FtDnoRgzFtt-1BRHygqIuggrfaJhNY0K1udxX_lL_RSbpdFWFvHuyxTUrbmc73TWYyA7CpyCgSbxA8I_rNfWkEJz8LOaahj2HdRFqkrtlE2GhE9_fx9RB8VHthbFplZROdoda5smvkuzIiR8R2k_QPnl-47Rplo6tVC41SLS7w_Y1ctmL__JjkuyXl6cnt0RnvdRXgirCyw1MVy0groh3GF1pk9T0tjdFB6qk49Y2OiRCkcaDQqBQ9JSLUmSYWHmR7Aunw6L7DMOJb6-9SBW_6UYswCMuOCSLiBPRBGUUliPTsjmQR2XNSuuia_F7L4Scm_oQEh3OnU__tC03DZI9Rs8PyF5iBIWzNwsRVvxxtMQeHboWNlXs4Cpa3mINw9pTr7mOTkVFVyHLDLBI85aR5TcVeXTiDZV1bhaKYh7s_eYcFqLXyFi4CIxOsvRDrNBP9zNDQusBYoJ9qtAx1CXb6kkx6FqBIyLmygk9-CX4JRCXsRPXqsNt2II-Dpmz3pzyXRUgGDV6t1OPrab50Y3nw5Q0YO7u9ukwuzxsXKzAuidKViXGrUOu0u7gGo-q10yza6071GTz8tSZ9Al6FP28
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH4qDKHtMGBjWjfYfBgXNAvj_D5MExqrVpVVSIDUW5bYz1IlSBhpO_Gv8dft2Ula0KTeeliOiR0l8Zf3fc_Pfg_gkyKjSLpB8JzkN_elEZz8LOSYRT5GoYm1yFyxiWg4jEej5LwDD-1eGLussrWJzlDrUtk58iMZkyNiq0n6R6ZZFnF-2vt6-5vbClI20tqW06ghMsD7P-S-VV_6pzTWB1L2vl9--8GbCgNcEW9OeKYSGWtFEsT4Qos8PNbSGB1knkoy3-iExEGWBAqNytBTIkada1LkQX4skA6P7rsGzyKfdIJbNngxj2BEQVRXTxAxJ9IP6ogq0aVndyeL2J6T0kXa5OO8Dk_58Sk9OM7rbf3PX2sbXjZKm53Uv8YOdLB4BS9-ztPUVq_hxM28sXpvR8XKgjlqZzelnl6PGRlbhaw0zDLETUmIHCs2c2EOlk9tdopqF65W8g5vYL0oC3wLjEyz9iIMqSf6uaGmocBEoJ9ptMq1C5_no5o2lqFKyemyIEj_AUEXRDvwqWrys9syIdfLuhzOu9zWyUmWNd5robJ4mgVO3i2__BE2CUDpWX84eA_PJSm9er3cHqxP7qa4DxtqNhlXdx_cX8Dg16qB9BeR-Eg1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+actions+on+local+moduli+space+of+holomorphic+vector+bundles&rft.jtitle=Canadian+mathematical+bulletin&rft.au=An-Khuong+Doan&rft.date=2023-06-01&rft.pub=Cambridge+University+Press&rft.issn=0008-4395&rft.volume=66&rft.issue=2&rft.spage=553&rft.epage=567&rft_id=info:doi/10.4153%2FS0008439522000522&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4395&client=summon