Multi-objective particle swarm optimization algorithm using Cauchy mutation and improved crowding distance

PurposeMulti-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to solve such multi-objective problems. Due to its strong search ability and convergence ability, particle swarm optimization algorithm is prop...

Full description

Saved in:
Bibliographic Details
Published in:International journal of intelligent computing and cybernetics Vol. 16; no. 2; pp. 250 - 276
Main Authors: Li, Qingxia, Zeng, Xiaohua, Wei, Wenhong
Format: Journal Article
Language:English
Published: Bingley Emerald Publishing Limited 15.05.2023
Emerald Group Publishing Limited
Subjects:
ISSN:1756-378X, 1756-3798
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract PurposeMulti-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to solve such multi-objective problems. Due to its strong search ability and convergence ability, particle swarm optimization algorithm is proposed, and the multi-objective particle swarm optimization algorithm is used to solve multi-objective optimization problems. However, the particles of particle swarm optimization algorithm are easy to fall into local optimization because of their fast convergence. Uneven distribution and poor diversity are the two key drawbacks of the Pareto front of multi-objective particle swarm optimization algorithm. Therefore, this paper aims to propose an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.Design/methodology/approachIn this paper, the proposed algorithm uses adaptive Cauchy mutation and improved crowding distance to perturb the particles in the population in a dynamic way in order to help the particles trapped in the local optimization jump out of it which improves the convergence performance consequently.FindingsIn order to solve the problems of uneven distribution and poor diversity in the Pareto front of multi-objective particle swarm optimization algorithm, this paper uses adaptive Cauchy mutation and improved crowding distance to help the particles trapped in the local optimization jump out of the local optimization. Experimental results show that the proposed algorithm has obvious advantages in convergence performance for nine benchmark functions compared with other multi-objective optimization algorithms.Originality/valueIn order to help the particles trapped in the local optimization jump out of the local optimization which improves the convergence performance consequently, this paper proposes an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.
AbstractList PurposeMulti-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to solve such multi-objective problems. Due to its strong search ability and convergence ability, particle swarm optimization algorithm is proposed, and the multi-objective particle swarm optimization algorithm is used to solve multi-objective optimization problems. However, the particles of particle swarm optimization algorithm are easy to fall into local optimization because of their fast convergence. Uneven distribution and poor diversity are the two key drawbacks of the Pareto front of multi-objective particle swarm optimization algorithm. Therefore, this paper aims to propose an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.Design/methodology/approachIn this paper, the proposed algorithm uses adaptive Cauchy mutation and improved crowding distance to perturb the particles in the population in a dynamic way in order to help the particles trapped in the local optimization jump out of it which improves the convergence performance consequently.FindingsIn order to solve the problems of uneven distribution and poor diversity in the Pareto front of multi-objective particle swarm optimization algorithm, this paper uses adaptive Cauchy mutation and improved crowding distance to help the particles trapped in the local optimization jump out of the local optimization. Experimental results show that the proposed algorithm has obvious advantages in convergence performance for nine benchmark functions compared with other multi-objective optimization algorithms.Originality/valueIn order to help the particles trapped in the local optimization jump out of the local optimization which improves the convergence performance consequently, this paper proposes an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.
Author Zeng, Xiaohua
Wei, Wenhong
Li, Qingxia
Author_xml – sequence: 1
  givenname: Qingxia
  surname: Li
  fullname: Li, Qingxia
  email: lee_qxia@163.com
– sequence: 2
  givenname: Xiaohua
  surname: Zeng
  fullname: Zeng, Xiaohua
  email: 285869276@qq.com
– sequence: 3
  givenname: Wenhong
  orcidid: 0000-0002-0881-459X
  surname: Wei
  fullname: Wei, Wenhong
  email: weiwh@dgut.edu.cn
BookMark eNp9UctOwzAQtFCRKIUf4GSJc8CPJnGOKOJRVMQFJG6W40frKI9iO63K15OQCgmEOO1KO7MzO3sKJk3baAAuMLrCGLHrxeMizyM0jwgiJEIYsyMwxWmcRDTN2OS7Z28n4NT7EqGExYxOQfnUVcFGbVFqGexWw41wwcpKQ78TrobtJtjafohg2waKatU6G9Y17LxtVjAXnVzvYd2Fw7xR0NYb1261gtK1OzWglPVBNFKfgWMjKq_PD3UGXu9uX_KHaPl8v8hvlpGkOA3RXBRGYoOwMUrEusjSRCaSFogaleEEs9QoYwRBaWbiBMdEiaxQic5iTWhmNJ2By3Fvb-S90z7wsu1c00tywjChacIo7lFkRPU-vXfa8I2ztXB7jhEfMuVfmXI050OmfMi0J7FfJGnH24MTtvqfikeqrrUTlfpb7scL6SfUao_r
CitedBy_id crossref_primary_10_1080_10407782_2023_2301050
crossref_primary_10_1108_AEAT_08_2023_0217
crossref_primary_10_3390_su17135709
crossref_primary_10_1007_s00521_025_11074_z
crossref_primary_10_1109_ACCESS_2024_3479282
Cites_doi 10.1109/4235.996017
10.1016/j.measurement.2016.06.050
10.1007/s10489-018-1170-x
10.1109/ACCESS.2019.2954542
10.1504/IJADS.2015.069610
10.1016/j.swevo.2011.03.001
10.1109/TCYB.2017.2710133
10.1109/TEVC.2013.2281535
10.1109/ACCESS.2018.2812701
10.1007/s00500-018-3553-7
10.1016/j.ins.2018.04.062
10.1007/s00766-020-00328-y
10.1016/j.asoc.2013.04.015
10.1111/coin.12258
10.1080/00207721.2018.1552765
10.1162/EVCO_a_00104
10.1049/iet-sen.2019.0018
10.1007/s12065-020-00436-2
10.3233/JIFS-201759
10.1016/j.swevo.2019.02.003
10.1016/j.aej.2021.08.058
10.1016/j.neucom.2012.08.074
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
0U~
1-H
7SC
7WY
7WZ
7XB
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
F~G
GNUQQ
HCIFZ
JQ2
K6~
K7-
L.-
L.0
L7M
L~C
L~D
M0C
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1108/IJICC-04-2022-0118
DatabaseName CrossRef
Global News & ABI/Inform Professional
Trade PRO
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
Trade PRO
ABI/INFORM Complete
ProQuest Central
Global News & ABI/Inform Professional
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1756-3798
EndPage 276
ExternalDocumentID 10_1108_IJICC_04_2022_0118
10.1108/IJICC-04-2022-0118
GroupedDBID 0R~
29J
4.4
5GY
5VS
70U
7WY
8FE
8FG
8R4
8R5
AAMCF
AATHL
AAUDR
ABIJV
ABKQV
ABSDC
ABYQI
ACGFS
ACGOD
ACZLT
ADOMW
AEBZA
AFKRA
AFYHH
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
AODMV
ARAPS
ASMFL
AUCOK
AZQEC
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CS3
DWQXO
EBS
ECCUG
FNNZZ
GEI
GEL
GNUQQ
GQ.
H13
HCIFZ
HZ~
J9A
JI-
JL0
K6V
K6~
K7-
KBGRL
M0C
M2P
M42
O9-
P62
PQBIZ
PQQKQ
PROAC
Q2X
RIG
SBBZN
AAYXX
ABJNI
AFFHD
AHMHQ
CITATION
PHGZM
PHGZT
PQGLB
0U~
1-H
7SC
7XB
8FD
AFNTC
JQ2
L.-
L.0
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c317t-4abfc1f01ffda5eb976c6c3b03fd916187fdffa2079f56152da9bd6e95e239fe3
IEDL.DBID BENPR
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000841887500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1756-378X
IngestDate Fri Jul 25 23:04:53 EDT 2025
Tue Nov 18 22:44:22 EST 2025
Sat Nov 29 07:41:01 EST 2025
Thu Oct 10 06:54:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Pareto
Cauchy variation
Crowding distance
Multi-objective
Particle swarm optimization
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-4abfc1f01ffda5eb976c6c3b03fd916187fdffa2079f56152da9bd6e95e239fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0881-459X
PQID 2812376831
PQPubID 52453
PageCount 27
ParticipantIDs crossref_citationtrail_10_1108_IJICC_04_2022_0118
emerald_primary_10_1108_IJICC-04-2022-0118
crossref_primary_10_1108_IJICC_04_2022_0118
proquest_journals_2812376831
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Bingley
PublicationPlace_xml – name: Bingley
PublicationTitle International journal of intelligent computing and cybernetics
PublicationYear 2023
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2023071410503704400_ref023) 2021; 14
(key2023071410503704400_ref024) 2021; 40
(key2023071410503704400_ref001) 2020; 36
(key2023071410503704400_ref004) 2019; 23
(key2023071410503704400_ref016) 2020; 14
(key2023071410503704400_ref030) 2018; 454-455
(key2023071410503704400_ref015) 2022; 19
(key2023071410503704400_ref025) 2020; 86
(key2023071410503704400_ref032) 2017; 47
(key2023071410503704400_ref007) 2014; 18
(key2023071410503704400_ref020) 2019; 46
(key2023071410503704400_ref013) 2021; 7
(key2023071410503704400_ref006) 2015; 148
(key2023071410503704400_ref017) 2015
(key2023071410503704400_ref009) 2022; 61
(key2023071410503704400_ref003) 2013; 13
(key2023071410503704400_ref026) 2005
(key2023071410503704400_ref027) 2014
(key2023071410503704400_ref014) 2014
(key2023071410503704400_ref010) 2021; 733
(key2023071410503704400_ref008) 2002; 6
(key2023071410503704400_ref018) 2018; 6
(key2023071410503704400_ref005) 2020; 25
(key2023071410503704400_ref002) 2014; 22
(key2023071410503704400_ref019) 2019; 7
(key2023071410503704400_ref031) 2011; 1
(key2023071410503704400_ref012) 2016; 93
(key2023071410503704400_ref029) 2018
(key2023071410503704400_ref022) 2019; 50
(key2023071410503704400_ref028) 2018; 48
(key2023071410503704400_ref011) 2015; 8
(key2023071410503704400_ref021) 2021; 36
References_xml – volume: 36
  start-page: 2085
  issue: 9
  year: 2021
  ident: key2023071410503704400_ref021
  article-title: R2 indicator and objective space partition based many-objective particle swarm optimizer
  publication-title: Kongzhi yu Juece/Control and Decision
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: key2023071410503704400_ref008
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 93
  start-page: 48
  year: 2016
  ident: key2023071410503704400_ref012
  article-title: A novel artificial bee colony algorithm for shortest path problems with fuzzy arc weights
  publication-title: Journal of the International Measurement Confederation
  doi: 10.1016/j.measurement.2016.06.050
– volume: 86
  year: 2020
  ident: key2023071410503704400_ref025
  article-title: A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems
  publication-title: Applied Soft Computing
– volume: 7
  start-page: 1
  issue: 4
  year: 2021
  ident: key2023071410503704400_ref013
  article-title: Modified artificial bee colony algorithm for solving mixed interval-valued fuzzy shortest path problem
  publication-title: Complex and Intelligent Systems
– start-page: 257
  year: 2005
  ident: key2023071410503704400_ref026
  article-title: An effective use of crowding distance in multiobjective particle swarm optimization
– volume: 48
  start-page: 3762
  year: 2018
  ident: key2023071410503704400_ref028
  article-title: A novel multi-objective optimization algorithm based on artificial algae for multi-objective engineering design problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-018-1170-x
– volume: 7
  start-page: 168091
  year: 2019
  ident: key2023071410503704400_ref019
  article-title: A multi-objective particle swarm optimization algorithm based on enhanced selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2954542
– volume: 733
  start-page: 61
  year: 2021
  ident: key2023071410503704400_ref010
  article-title: An interactive framework to compare multi-criteria optimization algorithms: preliminary results on NSGA-II and MOPSO. 2020 international conference on communication
  publication-title: Computing and Electronics Systems
– volume: 8
  start-page: 203
  issue: 2
  year: 2015
  ident: key2023071410503704400_ref011
  article-title: Particle swarm optimisation algorithm for solving shortest path problems with mixed fuzzy arc weights
  publication-title: International Journal of Applied Decision Sciences
  doi: 10.1504/IJADS.2015.069610
– volume: 1
  start-page: 32
  issue: 1
  year: 2011
  ident: key2023071410503704400_ref031
  article-title: Multi-objective evolutionary algorithms: a survey of the state-of-the-art
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.03.001
– volume: 47
  start-page: 2794
  issue: 9
  year: 2017
  ident: key2023071410503704400_ref032
  article-title: An external archive-guided multiobjective particle swarm optimization algorithm
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2710133
– volume: 19
  start-page: 230
  issue: 2
  year: 2022
  ident: key2023071410503704400_ref015
  article-title: An effective fault-tolerance technique in web services: an approach based on hybrid optimization algorithm of PSO and cuckoo search
  publication-title: The International Arab Journal of Information Technology
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: key2023071410503704400_ref007
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– start-page: 1324
  year: 2014
  ident: key2023071410503704400_ref027
  article-title: Hybrid many-objective particle swarm optimization set-evolution
– start-page: 1
  year: 2018
  ident: key2023071410503704400_ref029
  article-title: A many-objective particle swarm optimization based on virtual pareto front
– volume: 6
  start-page: 14710
  year: 2018
  ident: key2023071410503704400_ref018
  article-title: A hybrid multiobjective particle swarm optimization algorithm based on R2 indicator
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2812701
– volume: 23
  start-page: 9979
  issue: 20
  year: 2019
  ident: key2023071410503704400_ref004
  article-title: Software requirement optimization using a fuzzy artificial chemical reaction optimization algorithm
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3553-7
– volume: 454-455
  start-page: 59
  year: 2018
  ident: key2023071410503704400_ref030
  article-title: Surrogate-assisted hierarchical particle swarm optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.04.062
– volume: 25
  start-page: 363
  issue: 3
  year: 2020
  ident: key2023071410503704400_ref005
  article-title: Parallel multi-objective artificial bee colony algorithm for software requirement optimization
  publication-title: Requirements Engineering
  doi: 10.1007/s00766-020-00328-y
– volume: 13
  start-page: 3903
  issue: 9
  year: 2013
  ident: key2023071410503704400_ref003
  article-title: Attributed multi-objective comprehensive learning particle swarm optimization for optimal security of networks
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.04.015
– volume: 36
  start-page: 659
  issue: 2
  year: 2020
  ident: key2023071410503704400_ref001
  article-title: Elite artificial bees' colony algorithm to solve robot's fuzzy constrained routing problem
  publication-title: Computational Intelligence
  doi: 10.1111/coin.12258
– volume: 50
  start-page: 320
  issue: 2
  year: 2019
  ident: key2023071410503704400_ref022
  article-title: Handling many-objective optimisation problems with R2 indicator and decomposition-based particle swarm optimiser
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207721.2018.1552765
– start-page: 3148
  year: 2015
  ident: key2023071410503704400_ref017
  article-title: R2-MOPSO: a multi-objective particle swarm optimizer based on R2-indicator and decomposition
– volume: 22
  start-page: 47
  issue: 1
  year: 2014
  ident: key2023071410503704400_ref002
  article-title: D2MOPSO: MOPSO based on decomposition and dominance with archiving using crowding distance in objective and solution spaces
  publication-title: Evolutionary Computation
  doi: 10.1162/EVCO_a_00104
– volume: 14
  start-page: 369
  issue: 4
  year: 2020
  ident: key2023071410503704400_ref016
  article-title: Efficient improved ant colony optimisation algorithm for dynamic software rejuvenation in web services
  publication-title: IET Software
  doi: 10.1049/iet-sen.2019.0018
– volume: 14
  start-page: 759
  issue: 2
  year: 2021
  ident: key2023071410503704400_ref023
  article-title: Non-dominated Sorting Genetic Algorithm (NSGA-III) for effective resource allocation in cloud
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-020-00436-2
– start-page: 266
  year: 2014
  ident: key2023071410503704400_ref014
  article-title: MOPSOhv: a new hypervolume-based multi-objective particle swarm optimizer
– volume: 40
  start-page: 5027
  issue: 3
  year: 2021
  ident: key2023071410503704400_ref024
  article-title: A novel approach for the next software release using a binary artificial algae algorithm
  publication-title: Journal of Intelligent and Fuzzy Systems
  doi: 10.3233/JIFS-201759
– volume: 46
  start-page: 104
  year: 2019
  ident: key2023071410503704400_ref020
  article-title: Comparison between MOEA/D and NSGA-III on a set of many and multi-objective benchmark problems with challenging difficulties
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.02.003
– volume: 61
  start-page: 3403
  issue: 5
  year: 2022
  ident: key2023071410503704400_ref009
  article-title: A novel ant colony algorithm for solving shortest path problems with fuzzy arc weights
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2021.08.058
– volume: 148
  start-page: 23
  year: 2015
  ident: key2023071410503704400_ref006
  article-title: Improved multi-objective particle swarm optimization with preference strategy for optimal DG integration into the distribution system
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.074
SSID ssj0068583
ssib035523659
Score 2.2984967
Snippet PurposeMulti-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 250
SubjectTerms Adaptive algorithms
Archives & records
Convergence
Crowding
Decomposition
Efficiency
Local optimization
Multiple objective analysis
Objectives
Optimization algorithms
Pareto optimization
Pareto optimum
Particle swarm optimization
Swarm intelligence
Title Multi-objective particle swarm optimization algorithm using Cauchy mutation and improved crowding distance
URI https://www.emerald.com/insight/content/doi/10.1108/IJICC-04-2022-0118/full/html
https://www.proquest.com/docview/2812376831
Volume 16
WOSCitedRecordID wos000841887500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1756-3798
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0068583
  issn: 1756-378X
  databaseCode: M0C
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1756-3798
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0068583
  issn: 1756-378X
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1756-3798
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0068583
  issn: 1756-378X
  databaseCode: K7-
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1756-3798
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0068583
  issn: 1756-378X
  databaseCode: 7WY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1756-3798
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0068583
  issn: 1756-378X
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1756-3798
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0068583
  issn: 1756-378X
  databaseCode: M2P
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoy4EL5akuLZUPnEBWk9jZxKeqRK0oj9UKgVi4RPFj-lD30d1sq_57ZrwOVRHqhYulyI4se2a-GdvzYOyNQlA0GgrR92ku8LyhhTEIhhYAZNlkIFUIFP5cDAblaKSH8cJtEd0qO0wMQO2mlu7I9zLURCgMpUz3Z5eCqkbR62osobHGNihTGfL5xvvDwfBrx1GoTDMZ8qGvsJmSrQeX-yLvo2iVoy6MJin3jj8eVxW9E2Tk4E4BmXdU1V_xureYHRTR0eb_LuEJexxNUH6w4pmn7IGfPGObXXkHHqX9OTsPwblias5XoMhnkc344rqZj_kU0WYcwzh5c3GCU7WnY06e9Ce8apb29IaPl23snzh-Fi4wvOO43mvSmdyR9YqTvWDfjw6_VR9ELM0gLBocrVCNAZtCkgK4JvcGjRrbtxJ3HJymHPwFOIAmSwoNaKHlmWu0cX2vc59JDV6-ZOuT6cRvMW4UpNLnCqS3qpQe1WOijJEKUL9q53ss7ahQ25i3nMpnXNTh_JKUdaBcnaiaKFcT5Xrs3Z9_ZqusHfeOfhuJ--_Bd5iix3Y64tZR3Bf1LWVf3d-9zR5RvXpyP0jzHbbezpf-NXtor9qzxXyXrRU_fu5GHsavT4XA9ktSUZsNsR3mv34DL9j6Vw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXyqtioYAPcAFFTWxnEx8QQoGqS7crDkXam4lffaj7YDfLqn-K38jYcaiKUG89cLbjyPY3843teQC85qgUlXBF0rdZnuB5QyRKoTLUzjlW1tQxHgKFh8VoVI7H4usG_OpiYbxbZacTg6I2M-3vyHcpMhEKQ8myD_Mfia8a5V9XuxIaLSwO7MUaj2zL94NPuL9vKN37fFTtJ7GqQKKRK5uE18rpzKWZc6bOrUI-1n3NVMqcET59fOGMczVNC-HQuMipqYUyfStyS5lwluG4t-A2x4OXl6vDtOrwi9RNWci-3jKBT-0eHPyLvI-CXI67oJ203B18GVSVf5Wg3p3eh39eIca_ooMvGSLQ3t7W_7ZgD-B-NLDJx1YiHsKGnT6Cra54BYm67DGchdDjZKbOWpVP5lGIyHJdLyZkhrp0EoNUSX1-jFNrTibExwkck6pe6ZMLMlk1sX1qyGm4nrGG4PquvUVAjLfN8WdP4NuNzHgbNqezqX0KRHGXMZtzx6zmJbNI_ilXinGH1oMwtgdZt-tSx6zsvjjIuQyns7SUASky5dIjRXqk9ODdn2_mbU6Sa3u_jWD6d-crIOzBTgcmGZXZUl4i6dn1za_g7v7R4VAOB6OD53APRw2-oVm-A5vNYmVfwB39szldLl4GuSHw_aZx9xsRI1Rx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghCXlqdIaWEPcAFZsb3r1wFVVUpEaBXlAFLExXgf04eaB4lD1L_Gr-vsek1VhHrrgbPXa639zXyz3vlmAN4KcoqywCxITZQEtN8oAinJGSpE5HkVIxdOKHycDYf5eFyMNuB3q4WxaZWtT3SOWs-U_UfejYmJyBhyHnXRp0WMDvv785-B7SBlT1rbdhoNRI7M5Zq2b8uPg0P61u_iuP_pa-9z4DsMBIp4sw5EJVFFGEaIukqMJG5WqeIy5KgLW0o-Q41YxWFWIAUaSayrQurUFImJeYGG07z34H4m0tymk42S7y2WicZj7iqxN6xgy7y7ZP8sScmo83Er4Anz7uDLoNezJxSxTa23UtAbJPmXUviaLRwF9rf_55f3GLZ84M0OGkt5Ahtm-hS226YWzPu4Z3DuJMnBTJ43VMDm3rjYcl0tJmxGPnbixausujihpdWnE2b1AyesV63U6SWbrGp_farZmfttYzSjd722kQLTNmanhz2Hb3ey4hewOZ1NzUtgUmDETSKQGyVybigoCIWUXCBFFYU2HYhaBJTKV2u3TUMuSrdrC_PSoaYMRWlRU1rUdODDn3vmTa2SW0e_98D69-AbgOzAbgus0ju5ZXmNqp3bL7-BhwS38ngwPHoFj2hSlzIaJbuwWS9WZg8eqF_12XLx2pkQgx93Dbsr69JdgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+particle+swarm+optimization+algorithm+using+Cauchy+mutation+and+improved+crowding+distance&rft.jtitle=International+journal+of+intelligent+computing+and+cybernetics&rft.au=Li%2C+Qingxia&rft.au=Zeng%2C+Xiaohua&rft.au=Wei%2C+Wenhong&rft.date=2023-05-15&rft.pub=Emerald+Publishing+Limited&rft.issn=1756-378X&rft.volume=16&rft.issue=2&rft.spage=250&rft.epage=276&rft_id=info:doi/10.1108%2FIJICC-04-2022-0118&rft.externalDocID=10.1108%2FIJICC-04-2022-0118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-378X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-378X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-378X&client=summon