Multi-objective particle swarm optimization algorithm using Cauchy mutation and improved crowding distance
PurposeMulti-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to solve such multi-objective problems. Due to its strong search ability and convergence ability, particle swarm optimization algorithm is prop...
Saved in:
| Published in: | International journal of intelligent computing and cybernetics Vol. 16; no. 2; pp. 250 - 276 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bingley
Emerald Publishing Limited
15.05.2023
Emerald Group Publishing Limited |
| Subjects: | |
| ISSN: | 1756-378X, 1756-3798 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | PurposeMulti-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to solve such multi-objective problems. Due to its strong search ability and convergence ability, particle swarm optimization algorithm is proposed, and the multi-objective particle swarm optimization algorithm is used to solve multi-objective optimization problems. However, the particles of particle swarm optimization algorithm are easy to fall into local optimization because of their fast convergence. Uneven distribution and poor diversity are the two key drawbacks of the Pareto front of multi-objective particle swarm optimization algorithm. Therefore, this paper aims to propose an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.Design/methodology/approachIn this paper, the proposed algorithm uses adaptive Cauchy mutation and improved crowding distance to perturb the particles in the population in a dynamic way in order to help the particles trapped in the local optimization jump out of it which improves the convergence performance consequently.FindingsIn order to solve the problems of uneven distribution and poor diversity in the Pareto front of multi-objective particle swarm optimization algorithm, this paper uses adaptive Cauchy mutation and improved crowding distance to help the particles trapped in the local optimization jump out of the local optimization. Experimental results show that the proposed algorithm has obvious advantages in convergence performance for nine benchmark functions compared with other multi-objective optimization algorithms.Originality/valueIn order to help the particles trapped in the local optimization jump out of the local optimization which improves the convergence performance consequently, this paper proposes an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance. |
|---|---|
| AbstractList | PurposeMulti-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to solve such multi-objective problems. Due to its strong search ability and convergence ability, particle swarm optimization algorithm is proposed, and the multi-objective particle swarm optimization algorithm is used to solve multi-objective optimization problems. However, the particles of particle swarm optimization algorithm are easy to fall into local optimization because of their fast convergence. Uneven distribution and poor diversity are the two key drawbacks of the Pareto front of multi-objective particle swarm optimization algorithm. Therefore, this paper aims to propose an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.Design/methodology/approachIn this paper, the proposed algorithm uses adaptive Cauchy mutation and improved crowding distance to perturb the particles in the population in a dynamic way in order to help the particles trapped in the local optimization jump out of it which improves the convergence performance consequently.FindingsIn order to solve the problems of uneven distribution and poor diversity in the Pareto front of multi-objective particle swarm optimization algorithm, this paper uses adaptive Cauchy mutation and improved crowding distance to help the particles trapped in the local optimization jump out of the local optimization. Experimental results show that the proposed algorithm has obvious advantages in convergence performance for nine benchmark functions compared with other multi-objective optimization algorithms.Originality/valueIn order to help the particles trapped in the local optimization jump out of the local optimization which improves the convergence performance consequently, this paper proposes an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance. |
| Author | Zeng, Xiaohua Wei, Wenhong Li, Qingxia |
| Author_xml | – sequence: 1 givenname: Qingxia surname: Li fullname: Li, Qingxia email: lee_qxia@163.com – sequence: 2 givenname: Xiaohua surname: Zeng fullname: Zeng, Xiaohua email: 285869276@qq.com – sequence: 3 givenname: Wenhong orcidid: 0000-0002-0881-459X surname: Wei fullname: Wei, Wenhong email: weiwh@dgut.edu.cn |
| BookMark | eNp9UctOwzAQtFCRKIUf4GSJc8CPJnGOKOJRVMQFJG6W40frKI9iO63K15OQCgmEOO1KO7MzO3sKJk3baAAuMLrCGLHrxeMizyM0jwgiJEIYsyMwxWmcRDTN2OS7Z28n4NT7EqGExYxOQfnUVcFGbVFqGexWw41wwcpKQ78TrobtJtjafohg2waKatU6G9Y17LxtVjAXnVzvYd2Fw7xR0NYb1261gtK1OzWglPVBNFKfgWMjKq_PD3UGXu9uX_KHaPl8v8hvlpGkOA3RXBRGYoOwMUrEusjSRCaSFogaleEEs9QoYwRBaWbiBMdEiaxQic5iTWhmNJ2By3Fvb-S90z7wsu1c00tywjChacIo7lFkRPU-vXfa8I2ztXB7jhEfMuVfmXI050OmfMi0J7FfJGnH24MTtvqfikeqrrUTlfpb7scL6SfUao_r |
| CitedBy_id | crossref_primary_10_1080_10407782_2023_2301050 crossref_primary_10_1108_AEAT_08_2023_0217 crossref_primary_10_3390_su17135709 crossref_primary_10_1007_s00521_025_11074_z crossref_primary_10_1109_ACCESS_2024_3479282 |
| Cites_doi | 10.1109/4235.996017 10.1016/j.measurement.2016.06.050 10.1007/s10489-018-1170-x 10.1109/ACCESS.2019.2954542 10.1504/IJADS.2015.069610 10.1016/j.swevo.2011.03.001 10.1109/TCYB.2017.2710133 10.1109/TEVC.2013.2281535 10.1109/ACCESS.2018.2812701 10.1007/s00500-018-3553-7 10.1016/j.ins.2018.04.062 10.1007/s00766-020-00328-y 10.1016/j.asoc.2013.04.015 10.1111/coin.12258 10.1080/00207721.2018.1552765 10.1162/EVCO_a_00104 10.1049/iet-sen.2019.0018 10.1007/s12065-020-00436-2 10.3233/JIFS-201759 10.1016/j.swevo.2019.02.003 10.1016/j.aej.2021.08.058 10.1016/j.neucom.2012.08.074 |
| ContentType | Journal Article |
| Copyright | Emerald Publishing Limited Emerald Publishing Limited. |
| Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited. |
| DBID | AAYXX CITATION 0U~ 1-H 7SC 7WY 7WZ 7XB 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO F~G GNUQQ HCIFZ JQ2 K6~ K7- L.- L.0 L7M L~C L~D M0C M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U |
| DOI | 10.1108/IJICC-04-2022-0118 |
| DatabaseName | CrossRef Global News & ABI/Inform Professional Trade PRO Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College Trade PRO ABI/INFORM Complete ProQuest Central Global News & ABI/Inform Professional ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1756-3798 |
| EndPage | 276 |
| ExternalDocumentID | 10_1108_IJICC_04_2022_0118 10.1108/IJICC-04-2022-0118 |
| GroupedDBID | 0R~ 29J 4.4 5GY 5VS 70U 7WY 8FE 8FG 8R4 8R5 AAMCF AATHL AAUDR ABIJV ABKQV ABSDC ABYQI ACGFS ACGOD ACZLT ADOMW AEBZA AFKRA AFYHH AFZLO AJEBP ALMA_UNASSIGNED_HOLDINGS AODMV ARAPS ASMFL AUCOK AZQEC BENPR BEZIV BGLVJ BPHCQ CCPQU CS3 DWQXO EBS ECCUG FNNZZ GEI GEL GNUQQ GQ. H13 HCIFZ HZ~ J9A JI- JL0 K6V K6~ K7- KBGRL M0C M2P M42 O9- P62 PQBIZ PQQKQ PROAC Q2X RIG SBBZN AAYXX ABJNI AFFHD AHMHQ CITATION PHGZM PHGZT PQGLB 0U~ 1-H 7SC 7XB 8FD AFNTC JQ2 L.- L.0 L7M L~C L~D M0N PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c317t-4abfc1f01ffda5eb976c6c3b03fd916187fdffa2079f56152da9bd6e95e239fe3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000841887500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1756-378X |
| IngestDate | Fri Jul 25 23:04:53 EDT 2025 Tue Nov 18 22:44:22 EST 2025 Sat Nov 29 07:41:01 EST 2025 Thu Oct 10 06:54:04 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Pareto Cauchy variation Crowding distance Multi-objective Particle swarm optimization |
| Language | English |
| License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c317t-4abfc1f01ffda5eb976c6c3b03fd916187fdffa2079f56152da9bd6e95e239fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0881-459X |
| PQID | 2812376831 |
| PQPubID | 52453 |
| PageCount | 27 |
| ParticipantIDs | crossref_citationtrail_10_1108_IJICC_04_2022_0118 emerald_primary_10_1108_IJICC-04-2022-0118 crossref_primary_10_1108_IJICC_04_2022_0118 proquest_journals_2812376831 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-15 |
| PublicationDateYYYYMMDD | 2023-05-15 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Bingley |
| PublicationPlace_xml | – name: Bingley |
| PublicationTitle | International journal of intelligent computing and cybernetics |
| PublicationYear | 2023 |
| Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
| Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
| References | (key2023071410503704400_ref023) 2021; 14 (key2023071410503704400_ref024) 2021; 40 (key2023071410503704400_ref001) 2020; 36 (key2023071410503704400_ref004) 2019; 23 (key2023071410503704400_ref016) 2020; 14 (key2023071410503704400_ref030) 2018; 454-455 (key2023071410503704400_ref015) 2022; 19 (key2023071410503704400_ref025) 2020; 86 (key2023071410503704400_ref032) 2017; 47 (key2023071410503704400_ref007) 2014; 18 (key2023071410503704400_ref020) 2019; 46 (key2023071410503704400_ref013) 2021; 7 (key2023071410503704400_ref006) 2015; 148 (key2023071410503704400_ref017) 2015 (key2023071410503704400_ref009) 2022; 61 (key2023071410503704400_ref003) 2013; 13 (key2023071410503704400_ref026) 2005 (key2023071410503704400_ref027) 2014 (key2023071410503704400_ref014) 2014 (key2023071410503704400_ref010) 2021; 733 (key2023071410503704400_ref008) 2002; 6 (key2023071410503704400_ref018) 2018; 6 (key2023071410503704400_ref005) 2020; 25 (key2023071410503704400_ref002) 2014; 22 (key2023071410503704400_ref019) 2019; 7 (key2023071410503704400_ref031) 2011; 1 (key2023071410503704400_ref012) 2016; 93 (key2023071410503704400_ref029) 2018 (key2023071410503704400_ref022) 2019; 50 (key2023071410503704400_ref028) 2018; 48 (key2023071410503704400_ref011) 2015; 8 (key2023071410503704400_ref021) 2021; 36 |
| References_xml | – volume: 36 start-page: 2085 issue: 9 year: 2021 ident: key2023071410503704400_ref021 article-title: R2 indicator and objective space partition based many-objective particle swarm optimizer publication-title: Kongzhi yu Juece/Control and Decision – volume: 6 start-page: 182 issue: 2 year: 2002 ident: key2023071410503704400_ref008 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 93 start-page: 48 year: 2016 ident: key2023071410503704400_ref012 article-title: A novel artificial bee colony algorithm for shortest path problems with fuzzy arc weights publication-title: Journal of the International Measurement Confederation doi: 10.1016/j.measurement.2016.06.050 – volume: 86 year: 2020 ident: key2023071410503704400_ref025 article-title: A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems publication-title: Applied Soft Computing – volume: 7 start-page: 1 issue: 4 year: 2021 ident: key2023071410503704400_ref013 article-title: Modified artificial bee colony algorithm for solving mixed interval-valued fuzzy shortest path problem publication-title: Complex and Intelligent Systems – start-page: 257 year: 2005 ident: key2023071410503704400_ref026 article-title: An effective use of crowding distance in multiobjective particle swarm optimization – volume: 48 start-page: 3762 year: 2018 ident: key2023071410503704400_ref028 article-title: A novel multi-objective optimization algorithm based on artificial algae for multi-objective engineering design problems publication-title: Applied Intelligence doi: 10.1007/s10489-018-1170-x – volume: 7 start-page: 168091 year: 2019 ident: key2023071410503704400_ref019 article-title: A multi-objective particle swarm optimization algorithm based on enhanced selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2954542 – volume: 733 start-page: 61 year: 2021 ident: key2023071410503704400_ref010 article-title: An interactive framework to compare multi-criteria optimization algorithms: preliminary results on NSGA-II and MOPSO. 2020 international conference on communication publication-title: Computing and Electronics Systems – volume: 8 start-page: 203 issue: 2 year: 2015 ident: key2023071410503704400_ref011 article-title: Particle swarm optimisation algorithm for solving shortest path problems with mixed fuzzy arc weights publication-title: International Journal of Applied Decision Sciences doi: 10.1504/IJADS.2015.069610 – volume: 1 start-page: 32 issue: 1 year: 2011 ident: key2023071410503704400_ref031 article-title: Multi-objective evolutionary algorithms: a survey of the state-of-the-art publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.03.001 – volume: 47 start-page: 2794 issue: 9 year: 2017 ident: key2023071410503704400_ref032 article-title: An external archive-guided multiobjective particle swarm optimization algorithm publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2017.2710133 – volume: 19 start-page: 230 issue: 2 year: 2022 ident: key2023071410503704400_ref015 article-title: An effective fault-tolerance technique in web services: an approach based on hybrid optimization algorithm of PSO and cuckoo search publication-title: The International Arab Journal of Information Technology – volume: 18 start-page: 577 issue: 4 year: 2014 ident: key2023071410503704400_ref007 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2281535 – start-page: 1324 year: 2014 ident: key2023071410503704400_ref027 article-title: Hybrid many-objective particle swarm optimization set-evolution – start-page: 1 year: 2018 ident: key2023071410503704400_ref029 article-title: A many-objective particle swarm optimization based on virtual pareto front – volume: 6 start-page: 14710 year: 2018 ident: key2023071410503704400_ref018 article-title: A hybrid multiobjective particle swarm optimization algorithm based on R2 indicator publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2812701 – volume: 23 start-page: 9979 issue: 20 year: 2019 ident: key2023071410503704400_ref004 article-title: Software requirement optimization using a fuzzy artificial chemical reaction optimization algorithm publication-title: Soft Computing doi: 10.1007/s00500-018-3553-7 – volume: 454-455 start-page: 59 year: 2018 ident: key2023071410503704400_ref030 article-title: Surrogate-assisted hierarchical particle swarm optimization publication-title: Information Sciences doi: 10.1016/j.ins.2018.04.062 – volume: 25 start-page: 363 issue: 3 year: 2020 ident: key2023071410503704400_ref005 article-title: Parallel multi-objective artificial bee colony algorithm for software requirement optimization publication-title: Requirements Engineering doi: 10.1007/s00766-020-00328-y – volume: 13 start-page: 3903 issue: 9 year: 2013 ident: key2023071410503704400_ref003 article-title: Attributed multi-objective comprehensive learning particle swarm optimization for optimal security of networks publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.04.015 – volume: 36 start-page: 659 issue: 2 year: 2020 ident: key2023071410503704400_ref001 article-title: Elite artificial bees' colony algorithm to solve robot's fuzzy constrained routing problem publication-title: Computational Intelligence doi: 10.1111/coin.12258 – volume: 50 start-page: 320 issue: 2 year: 2019 ident: key2023071410503704400_ref022 article-title: Handling many-objective optimisation problems with R2 indicator and decomposition-based particle swarm optimiser publication-title: International Journal of Systems Science doi: 10.1080/00207721.2018.1552765 – start-page: 3148 year: 2015 ident: key2023071410503704400_ref017 article-title: R2-MOPSO: a multi-objective particle swarm optimizer based on R2-indicator and decomposition – volume: 22 start-page: 47 issue: 1 year: 2014 ident: key2023071410503704400_ref002 article-title: D2MOPSO: MOPSO based on decomposition and dominance with archiving using crowding distance in objective and solution spaces publication-title: Evolutionary Computation doi: 10.1162/EVCO_a_00104 – volume: 14 start-page: 369 issue: 4 year: 2020 ident: key2023071410503704400_ref016 article-title: Efficient improved ant colony optimisation algorithm for dynamic software rejuvenation in web services publication-title: IET Software doi: 10.1049/iet-sen.2019.0018 – volume: 14 start-page: 759 issue: 2 year: 2021 ident: key2023071410503704400_ref023 article-title: Non-dominated Sorting Genetic Algorithm (NSGA-III) for effective resource allocation in cloud publication-title: Evolutionary Intelligence doi: 10.1007/s12065-020-00436-2 – start-page: 266 year: 2014 ident: key2023071410503704400_ref014 article-title: MOPSOhv: a new hypervolume-based multi-objective particle swarm optimizer – volume: 40 start-page: 5027 issue: 3 year: 2021 ident: key2023071410503704400_ref024 article-title: A novel approach for the next software release using a binary artificial algae algorithm publication-title: Journal of Intelligent and Fuzzy Systems doi: 10.3233/JIFS-201759 – volume: 46 start-page: 104 year: 2019 ident: key2023071410503704400_ref020 article-title: Comparison between MOEA/D and NSGA-III on a set of many and multi-objective benchmark problems with challenging difficulties publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2019.02.003 – volume: 61 start-page: 3403 issue: 5 year: 2022 ident: key2023071410503704400_ref009 article-title: A novel ant colony algorithm for solving shortest path problems with fuzzy arc weights publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2021.08.058 – volume: 148 start-page: 23 year: 2015 ident: key2023071410503704400_ref006 article-title: Improved multi-objective particle swarm optimization with preference strategy for optimal DG integration into the distribution system publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.074 |
| SSID | ssj0068583 ssib035523659 |
| Score | 2.2985926 |
| Snippet | PurposeMulti-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to... |
| SourceID | proquest crossref emerald |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 250 |
| SubjectTerms | Adaptive algorithms Archives & records Convergence Crowding Decomposition Efficiency Local optimization Multiple objective analysis Objectives Optimization algorithms Pareto optimization Pareto optimum Particle swarm optimization Swarm intelligence |
| Title | Multi-objective particle swarm optimization algorithm using Cauchy mutation and improved crowding distance |
| URI | https://www.emerald.com/insight/content/doi/10.1108/IJICC-04-2022-0118/full/html https://www.proquest.com/docview/2812376831 |
| Volume | 16 |
| WOSCitedRecordID | wos000841887500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1756-3798 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0068583 issn: 1756-378X databaseCode: 7WY dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1756-3798 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0068583 issn: 1756-378X databaseCode: M0C dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1756-3798 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0068583 issn: 1756-378X databaseCode: P5Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1756-3798 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0068583 issn: 1756-378X databaseCode: K7- dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1756-3798 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0068583 issn: 1756-378X databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1756-3798 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0068583 issn: 1756-378X databaseCode: M2P dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZoy4ELZRVDS-UDJ5BVx1nsnCqIWlGW0QixDFwir13UWZjJUPHvec_jUBWhXrhYiuzIst9q-733EfJcKINAxoa5wntWVMozZfOawSGOO86N9xEz8st7ORyq8bgepQu3ZQqr7HViVNRuZvGOfF-AJQJhUHl2MP_BEDUKX1cThMYG2cJKZcDnW68Ph6OPPUeBMRV5rIe-1s1YbD2G3MuyAtFS4z6Nhqv947fHTYPvBAID3DEh85qp-itf90pnR0N0tP2_S7hH7iYXlL5a88x9cstPH5DtHt6BJml_SM5jci6bmfO1UqTzxGZ0eakXEzoDbTNJaZxUX5zAVN3phGIk_Qlt9Mqe_qKTVZf6p46exQsM7yis9xJtJnXovcJkj8jno8NPzRuWoBmYBYejY4U2wWaBZyE4XXoDTo2tbA47HlyNNfhlcCFowWUdwEMrhdO1cZWvSy_yOvj8Mdmczqb-CaGaOzjTZLpQoSq0UjUYThippZRGmKIakKynQmtT3XKEz7ho4_mFqzZSruVFi5RrkXID8vLPP_N11Y4bR79IxP334GtMMSC7PXHbJO7L9oqyT2_u3iF3EK8eww-ycpdsdouVf0Zu25_d2XKxRzbk1297iYfh651k0H7gDbZiBO2o_P4bHSD6Ew |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMsFPABLiCrjvNyDlWFAlWXblccCtqbsWO7D3Uf7GZZ9U_1N3bsJFRFqLceONtxZPub-cb2PADecaF9IWNNTWItTTJhqajiguIhjhnGtLWhZuSPQT4citGo-LYGF10sjHer7HRiUNRmWvk78i2OTITCIOJoZ_aL-qpR_nW1K6HRwGLfnq_wyLbY7n_G_X3P-e6Xw3KPtlUFaIVcWdNEaVdFjkXOGZVajXxcZVWsWexM4dPH5844pzjLC4fGRcqNKrTJbJFaHhfOxjjuHbiLEwwG2QErO_widfM4ZF9vmMCndg8O_nmaoSCLURe0w8RW_2u_LP2rBPfu9D788xox_hUdfMUQgfZ2N_63BXsED1sDm3xqJOIxrNnJE9joileQVpc9hdMQekyn-rRR-WTWChFZrNR8TKaoS8dtkCpRZ0c4tfp4THycwBEp1bI6PifjZd22Tww5Cdcz1hBc35W3CIjxtjn-7Bl8v5UZP4f1yXRiXwBRzOCJLVKJcFmihCjQLMCeKs9zzXWS9SDqdl1WbVZ2XxzkTIbTGRMyIEWyRHqkSI-UHnz8882syUlyY-8PLZj-3fkaCHuw2YFJtspsIa-Q9PLm5rdwf-_wYCAH_eH-K3iAowbf0CjdhPV6vrSv4V71uz5ZzN8EuSHw87Zxdwn_DlQt |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VglAvlFfVQAEf4AJaxet9eQ8IoZSI0CrKAVDEZfGzDzUPkg1R_1p_XcdeL1UR6q0Hzuv1yt5v5pux5wHwmnHpGhnLSKfGRGnOTcRVUkboxFFNqTTG94z8flgMh3w8LkcbcNHmwriwylYnekWtZ8qdkXcZMhEKA0_irg1hEaP9_of5r8h1kHI3rW07jQYiB-Z8je7b8v1gH__1G8b6n772Pkehw0CkkDfrKBXSqtjS2FotMiORm1WuEkkTq0tXSr6w2lrBaFFaNDQypkUpdW7KzLCktCbBee_A3QLX6MLJRtmPFstI4yzxldgbVnBl3n2wf5HlKNR83CbwUN4dfBn0eu6GgrnQepcKeo0k_8oUvmILT4H97f958x7Cg2B4k4-NpDyCDTN9DNttUwsSdNwTOPUpydFMnjZUQOZBuMhyLRYTMkMdOwnJq0ScHeHS6uMJcfkDR6QnVur4nExWdXg-1eTEH9sYTXCv185SINrZ7Pixp_DtVla8A5vT2dTsAhFUoycXi5TbPBWcl2gu4EhRFIVkMs07ELcIqFSo1u6ahpxV3mujvPKoqWhaOdRUDjUdePfnnXlTq-TG0W8DsP49-BogO7DXAqsKSm5ZXaHq2c2PX8F9hFt1OBgePIctnNSHjMbZHmzWi5V5AffU7_pkuXjpRYjAz9uG3SXcaF09 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+particle+swarm+optimization+algorithm+using+Cauchy+mutation+and+improved+crowding+distance&rft.jtitle=International+journal+of+intelligent+computing+and+cybernetics&rft.au=Li%2C+Qingxia&rft.au=Zeng%2C+Xiaohua&rft.au=Wei%2C+Wenhong&rft.date=2023-05-15&rft.pub=Emerald+Group+Publishing+Limited&rft.issn=1756-378X&rft.eissn=1756-3798&rft.volume=16&rft.issue=2&rft.spage=250&rft.epage=276&rft_id=info:doi/10.1108%2FIJICC-04-2022-0118&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-378X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-378X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-378X&client=summon |