On the moduli of hypersurfaces in toric orbifolds

We construct and study the moduli of stable hypersurfaces in toric orbifolds. Let X be a projective toric orbifold and $\alpha \in \operatorname{Cl}(X)$ an ample class. The moduli space is constructed as a quotient of the linear system $|\alpha|$ by $G = \operatorname{Aut}(X)$. Since the group G is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the Edinburgh Mathematical Society Ročník 67; číslo 2; s. 577 - 616
Hlavní autor: Bunnett, Dominic
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.05.2024
Témata:
ISSN:0013-0915, 1464-3839
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We construct and study the moduli of stable hypersurfaces in toric orbifolds. Let X be a projective toric orbifold and $\alpha \in \operatorname{Cl}(X)$ an ample class. The moduli space is constructed as a quotient of the linear system $|\alpha|$ by $G = \operatorname{Aut}(X)$. Since the group G is non-reductive in general, we use new techniques of non-reductive geometric invariant theory. Using the A-discriminant of Gelfand, Kapranov and Zelevinsky, we prove semistability for quasismooth hypersurfaces of toric orbifolds. Further, we prove the existence of a quasi-projective moduli space of quasismooth hypersurfaces in a weighted projective space when the weighted projective space satisfies a certain condition. We also discuss how to proceed when this condition is not satisfied. We prove that the automorphism group of a quasismooth hypersurface of weighted projective space is finite excluding some low degrees.
AbstractList We construct and study the moduli of stable hypersurfaces in toric orbifolds. Let X be a projective toric orbifold and $\alpha \in \operatorname{Cl}(X)$ an ample class. The moduli space is constructed as a quotient of the linear system $|\alpha|$ by $G = \operatorname{Aut}(X)$ . Since the group G is non-reductive in general, we use new techniques of non-reductive geometric invariant theory. Using the A -discriminant of Gelfand, Kapranov and Zelevinsky, we prove semistability for quasismooth hypersurfaces of toric orbifolds. Further, we prove the existence of a quasi-projective moduli space of quasismooth hypersurfaces in a weighted projective space when the weighted projective space satisfies a certain condition. We also discuss how to proceed when this condition is not satisfied. We prove that the automorphism group of a quasismooth hypersurface of weighted projective space is finite excluding some low degrees.
We construct and study the moduli of stable hypersurfaces in toric orbifolds. Let X be a projective toric orbifold and \(\alpha \in \operatorname{Cl}(X)\) an ample class. The moduli space is constructed as a quotient of the linear system \(|\alpha|\) by \(G = \operatorname{Aut}(X)\). Since the group G is non-reductive in general, we use new techniques of non-reductive geometric invariant theory. Using the A-discriminant of Gelfand, Kapranov and Zelevinsky, we prove semistability for quasismooth hypersurfaces of toric orbifolds. Further, we prove the existence of a quasi-projective moduli space of quasismooth hypersurfaces in a weighted projective space when the weighted projective space satisfies a certain condition. We also discuss how to proceed when this condition is not satisfied. We prove that the automorphism group of a quasismooth hypersurface of weighted projective space is finite excluding some low degrees.
Author Bunnett, Dominic
Author_xml – sequence: 1
  givenname: Dominic
  orcidid: 0009-0007-6921-3177
  surname: Bunnett
  fullname: Bunnett, Dominic
  email: bunnett@math.tu-berlin.de
  organization: Institut für Mathematik, TU Berlin, Germany (bunnett@math.tu-berlin.de)
BookMark eNp9kEtLw0AUhQepYFv9Ae4CrqPznslSii8odKGuw2Ryx05JMnEmWfTfm9KCoOjqXjjnu_dwFmjWhQ4Quib4lmCi7l4xJgwXRFCOp1XKMzQnXPKcaVbM0Pwg5wf9Ai1S2k0epQSZI7LpsmELWRvqsfFZcNl230NMY3TGQsr8JIfobRZi5V1o6nSJzp1pElyd5hK9Pz68rZ7z9ebpZXW_zi0jasi5FqCoorjWhaok1xIsV5IDCKYKR40uDK-1ckyArox1AjvNuRWVIhIcZUt0c7zbx_A5QhrKXRhjN70sGRaCFoRTObnI0WVjSCmCK_voWxP3JcHloZnyVzMTo34w1g9m8KEbovHNvyQ7kaatoq8_4DvU39QXqpd1-A
CitedBy_id crossref_primary_10_1112_jlms_70099
crossref_primary_10_1007_s11425_024_2319_5
Cites_doi 10.1016/j.aim.2009.02.007
10.2307/2951828
10.4310/PAMQ.2007.v3.n1.a3
10.1007/s13366-011-0084-0
10.1112/S0010437X0400123X
10.1112/topo.12075
10.1017/CBO9780511615436
10.1007/BF01404578
10.1007/BF02684747
10.1215/S0012-7094-94-07509-1
10.1090/S1056-3911-2013-00651-7
10.1112/blms.12581
ContentType Journal Article
Copyright The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society
Copyright_xml – notice: The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0013091524000166
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3839
EndPage 616
ExternalDocumentID 10_1017_S0013091524000166
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
123
29O
3V.
4.4
5VS
6OB
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABEFF
ABEFU
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABVFV
ABVZP
ABXAU
ABZCX
ABZUI
ACBMC
ACETC
ACGFS
ACGOD
ACIMK
ACIPV
ACIWK
ACMRT
ACNCT
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADOJD
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
CTKSN
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
FRP
GNUQQ
HCIFZ
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OHT
OK1
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNI
ROL
RR0
RZO
S6-
S6U
SAAAG
T9M
TR2
TWZ
UT1
WFFJZ
WH7
WQ3
WXU
WYP
XOL
YNT
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
~V1
AAKNA
AATMM
AAYXX
ABGDZ
ABVKB
ABXHF
ACDLN
ACEJA
ACRPL
ADNMO
AEMFK
AFFHD
AFZFC
AGQPQ
AHDLI
AKMAY
AMVHM
ANOYL
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c317t-485e72720d897b6486ec4764ee5379f2a89a4d87f35e8bacf50f844c5b716ef23
IEDL.DBID M2P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001192306900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-0915
IngestDate Fri Jul 25 19:38:10 EDT 2025
Sat Nov 29 05:56:32 EST 2025
Tue Nov 18 21:35:19 EST 2025
Wed May 22 06:52:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 14L24
14J70
geometric invariant theory
moduli theory
toric varieties
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-485e72720d897b6486ec4764ee5379f2a89a4d87f35e8bacf50f844c5b716ef23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-6921-3177
PQID 3055291426
PQPubID 41713
PageCount 40
ParticipantIDs proquest_journals_3055291426
crossref_primary_10_1017_S0013091524000166
crossref_citationtrail_10_1017_S0013091524000166
cambridge_journals_10_1017_S0013091524000166
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Proceedings of the Edinburgh Mathematical Society
PublicationTitleAlternate Proceedings of the Edinburgh Mathematical Society
PublicationYear 2024
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2013; 54
180
1967; 4
141
1997; 145
2009; 221
2007
3
1964; 20
102
2022; 54
2018; 11
1995; 4
2014; 23
1994; 75
Dolgachev (S0013091524000166_ref14); 956
Bérczi (S0013091524000166_ref7) 2018; 22
Keel (S0013091524000166_ref23) 1997; 145
Arzhantsev (S0013091524000166_ref1) 2015
Iano-Fletcher (S0013091524000166_ref22) 2000; 281
Asok (S0013091524000166_ref3) 2009; 221
Esnault (S0013091524000166_ref17) 1992
Hartshorne (S0013091524000166_ref20) 1977
Tommasi (S0013091524000166_ref31); 141
Liu (S0013091524000166_ref25) 2022; 54
King (S0013091524000166_ref24); 180
S0013091524000166_ref21
Gelfand (S0013091524000166_ref18) 2008
Bérczi (S0013091524000166_ref6) 2018; IV
Cox (S0013091524000166_ref12) 2011
Cox (S0013091524000166_ref10) 1995; 4
Asok (S0013091524000166_ref2) 2007
Bérczi (S0013091524000166_ref5) 2018; 11
Grothendieck (S0013091524000166_ref19) 1964; 20
Putcha (S0013091524000166_ref29) 1988; 133
S0013091524000166_ref4
S0013091524000166_ref30
Odaka (S0013091524000166_ref28); 102
Batyrev (S0013091524000166_ref8) 1994; 75
Cox (S0013091524000166_ref11) 2014; 23
Matsumura (S0013091524000166_ref26) 1967; 4
Bazhov (S0013091524000166_ref9) 2013; 54
Doran (S0013091524000166_ref16); 3
Dolgachev (S0013091524000166_ref15) 2003
S0013091524000166_ref13
Mumford (S0013091524000166_ref27) 1965
References_xml – volume: 4
  start-page: 1
  year: 1967
  end-page: 25
  article-title: Representability of group functors, and automorphisms of algebraic schemes
  publication-title: Invent. Math.
– volume: 20
  year: 1964
  article-title: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I
  publication-title: Inst. Hautes ÉTudes Sci. Publ. Math.
– volume: 221
  start-page: 1144
  issue: 4
  year: 2009
  end-page: 1190
  article-title: $\mathbb{A}^1$-homotopy groups, excision, and solvable quotients
  publication-title: Adv. Math.
– volume: 180
  start-page: 515
  issue: 45
  end-page: 530
  article-title: Moduli of representations of finite-dimensional algebras, 1994
  publication-title: Quart. J. Math. Oxford Ser. (2)
– volume: 54
  start-page: 517
  issue: 2
  year: 2022
  end-page: 525
  article-title: On k-stability of some del pezzo surfaces of fano index 2
  publication-title: Bull. Lond. Math. Soc.
– volume: 54
  start-page: 471
  issue: 2
  year: 2013
  end-page: 481
  article-title: On orbits of the automorphism group on a complete toric variety
  publication-title: Beitr. Algebra Geom.
– volume: 3
  start-page: 61
  issue: 1
  end-page: 105
  article-title: Towards non-reductive geometric invariant theory, 2007
  publication-title: Pure Appl. Math. Q.
– volume: 4
  start-page: 17
  issue: 1
  year: 1995
  end-page: 50
  article-title: The homogeneous coordinate ring of a toric variety
  publication-title: J. Algebraic Geom.
– volume: 23
  start-page: 393
  issue: 2
  year: 2014
  end-page: 398
  article-title: Erratum to “The homogeneous coordinate ring of a toric variety”
  publication-title: J. Algebraic Geom.
– volume: 75
  start-page: 293
  issue: 2
  year: 1994
  end-page: 338
  article-title: On the Hodge structure of projective hypersurfaces in toric varieties
  publication-title: Duke Math. J.
– volume: 141
  start-page: 359
  issue: 2
  end-page: 384
  article-title: Rational cohomology of the moduli space of genus 4 curves, 2005
  publication-title: Compos. Math.
– volume: 145
  start-page: 193
  issue: 1
  year: 1997
  end-page: 213
  article-title: Quotients by groupoids
  publication-title: Ann. of Math. (2)
– volume: 11
  start-page: 826
  issue: 3
  year: 2018
  end-page: 855
  article-title: Geometric invariant theory for graded unipotent groups and applications
  publication-title: J. Topol.
– volume: 102
  start-page: 127
  issue: 1
  end-page: 172
  article-title: Compact moduli spaces of del Pezzo surfaces and Kähler–Einstein metrics.
  publication-title: J. Differ. Geom.
– issue: 2
  year: 2007
  article-title: On unipotent quotients and some $\mathbb{A}^1$-contractible smooth schemes
  publication-title: Int. Math. Res. Pap.
– volume: 221
  start-page: 1144
  year: 2009
  ident: S0013091524000166_ref3
  article-title: $\mathbb{A}^1$-homotopy groups, excision, and solvable quotients
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2009.02.007
– ident: S0013091524000166_ref13
– volume: 145
  start-page: 193
  year: 1997
  ident: S0013091524000166_ref23
  article-title: Quotients by groupoids
  publication-title: Ann. of Math. (2)
  doi: 10.2307/2951828
– volume: 3
  start-page: 61
  ident: S0013091524000166_ref16
  article-title: Towards non-reductive geometric invariant theory, 2007
  publication-title: Pure Appl. Math. Q.
  doi: 10.4310/PAMQ.2007.v3.n1.a3
– volume: 281
  volume-title: Explicit Birational Geometry of 3-folds, London Math. Soc. Lecture Note Ser.
  year: 2000
  ident: S0013091524000166_ref22
– ident: S0013091524000166_ref30
– volume-title: DMV Seminar
  year: 1992
  ident: S0013091524000166_ref17
– volume: 133
  volume-title: London Mathematical Society Lecture Note Series
  year: 1988
  ident: S0013091524000166_ref29
– volume: 54
  start-page: 471
  year: 2013
  ident: S0013091524000166_ref9
  article-title: On orbits of the automorphism group on a complete toric variety
  publication-title: Beitr. Algebra Geom.
  doi: 10.1007/s13366-011-0084-0
– volume: 4
  start-page: 17
  year: 1995
  ident: S0013091524000166_ref10
  article-title: The homogeneous coordinate ring of a toric variety
  publication-title: J. Algebraic Geom.
– volume-title: Graduate Texts in Mathematics
  year: 1977
  ident: S0013091524000166_ref20
– volume: 22
  volume-title: Surveys in Differential Geometry 2017. Celebrating the 50th Anniversary of the Journal of Differential Geometry, Surv. Differ. Geom.
  year: 2018
  ident: S0013091524000166_ref7
– volume: 141
  start-page: 359
  ident: S0013091524000166_ref31
  article-title: Rational cohomology of the moduli space of genus 4 curves, 2005
  publication-title: Compos. Math.
  doi: 10.1112/S0010437X0400123X
– volume: 102
  start-page: 127
  ident: S0013091524000166_ref28
  article-title: Compact moduli spaces of del Pezzo surfaces and Kähler–Einstein metrics.
  publication-title: J. Differ. Geom.
– volume: 11
  start-page: 826
  year: 2018
  ident: S0013091524000166_ref5
  article-title: Geometric invariant theory for graded unipotent groups and applications
  publication-title: J. Topol.
  doi: 10.1112/topo.12075
– volume: 956
  volume-title: Lecture Notes in Math.
  ident: S0013091524000166_ref14
– volume: IV
  volume-title: Handbook of Group actions., Adv. Lect. Math. (ALM), 41
  year: 2018
  ident: S0013091524000166_ref6
– volume-title: Ergebnisse der Mathematik und Ihrer Grenzgebiete, Neue Folge, Band 34
  year: 1965
  ident: S0013091524000166_ref27
– volume-title: Lectures on Invariant theory
  year: 2003
  ident: S0013091524000166_ref15
  doi: 10.1017/CBO9780511615436
– volume: 180
  start-page: 515
  ident: S0013091524000166_ref24
  article-title: Moduli of representations of finite-dimensional algebras, 1994
  publication-title: Quart. J. Math. Oxford Ser. (2)
– volume: 4
  start-page: 1
  year: 1967
  ident: S0013091524000166_ref26
  article-title: Representability of group functors, and automorphisms of algebraic schemes
  publication-title: Invent. Math.
  doi: 10.1007/BF01404578
– volume-title: Cambridge Studies in Advanced Mathematics
  year: 2015
  ident: S0013091524000166_ref1
– volume: 20
  year: 1964
  ident: S0013091524000166_ref19
  article-title: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I
  publication-title: Inst. Hautes ÉTudes Sci. Publ. Math.
  doi: 10.1007/BF02684747
– volume-title: Graduate Studies in Mathematics
  year: 2011
  ident: S0013091524000166_ref12
– volume: 75
  start-page: 293
  year: 1994
  ident: S0013091524000166_ref8
  article-title: On the Hodge structure of projective hypersurfaces in toric varieties
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-94-07509-1
– ident: S0013091524000166_ref4
– volume: 23
  start-page: 393
  year: 2014
  ident: S0013091524000166_ref11
  article-title: Erratum to “The homogeneous coordinate ring of a toric variety”
  publication-title: J. Algebraic Geom.
  doi: 10.1090/S1056-3911-2013-00651-7
– ident: S0013091524000166_ref21
– volume: 54
  start-page: 517
  year: 2022
  ident: S0013091524000166_ref25
  article-title: On k-stability of some del pezzo surfaces of fano index 2
  publication-title: Bull. Lond. Math. Soc.
  doi: 10.1112/blms.12581
– year: 2007
  ident: S0013091524000166_ref2
  article-title: On unipotent quotients and some $\mathbb{A}^1$-contractible smooth schemes
  publication-title: Int. Math. Res. Pap.
– volume-title: Modern BirkhäUser Classics
  year: 2008
  ident: S0013091524000166_ref18
SSID ssj0007751
Score 2.3457224
Snippet We construct and study the moduli of stable hypersurfaces in toric orbifolds. Let X be a projective toric orbifold and $\alpha \in \operatorname{Cl}(X)$ an...
We construct and study the moduli of stable hypersurfaces in toric orbifolds. Let X be a projective toric orbifold and $\alpha \in \operatorname{Cl}(X)$ an...
We construct and study the moduli of stable hypersurfaces in toric orbifolds. Let X be a projective toric orbifold and \(\alpha \in \operatorname{Cl}(X)\) an...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 577
SubjectTerms Algebra
Automorphisms
Hyperspaces
Theorems
Topological manifolds
Title On the moduli of hypersurfaces in toric orbifolds
URI https://www.cambridge.org/core/product/identifier/S0013091524000166/type/journal_article
https://www.proquest.com/docview/3055291426
Volume 67
WOSCitedRecordID wos001192306900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1464-3839
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0007751
  issn: 0013-0915
  databaseCode: P5Z
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1464-3839
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0007751
  issn: 0013-0915
  databaseCode: K7-
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1464-3839
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0007751
  issn: 0013-0915
  databaseCode: M7S
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1464-3839
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0007751
  issn: 0013-0915
  databaseCode: BENPR
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1464-3839
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0007751
  issn: 0013-0915
  databaseCode: M2P
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5o60EP7mK1ljl4EoOdabY5iUqLIK3FBYqXkmbBQu3UmdbfbzJbKUIvXgIzmUB4L_OWvMf3AVzaCFSEihjEJKcIU6EQl5gjJqgJqKBKGJmSTbBejw8GYT-_cEvytsrCJqaGWkXS3ZHfOGSqIPStQ7mdfSPHGuWqqzmFxiZUbWTju5aubtAvLTFjxC8ZDEKfFFXNFDLalezsO9dDacOeFWyFVR-1aqJTv9PZ---O92E3jzi9u-yIHMCGnh7CTreEa02OwH-eevbR-4rUYjL2IuN92vQ0ThaxcR1b3thOOywRL4pHYxNNVHIM753228MjyrkUkLQRwhxhTnRac1U8ZCOKOdUSM4q1Ji0WmkDwUGDFmWkRzUdCGtI0HGNJRjah0iZonUBlGk31KXiUGiYNV9wwjltacatORoSxqZnVuo9rcF1Kcpj_Eckw6yZjwz-Cr0GzEPZQ5rjkjh5jsm7JVblkloFyrPu4XqhnuZulbs7WT5_DdmDDmKzFsQ6VebzQF7Alf-bjJG5A9b7d6780YPOJoUZ6-NzIXu3YJx-_xVna5g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8NAFH6UKqgHd3F3DnoRgyadLQcRcUGxrT0oeIvTWbBQG01axT_lb3QmaSJF6K0Hj5nJwJD3zVvmvXwPYN96oCJUxHhMcuphKpTHJeYeE9QEVFAljMyaTbBmkz89ha0KfBf_wriyykInZopaxdLdkR87Zqog9K1BOXt791zXKJddLVpo5LC401-fNmRLT28vrXwPguD66uHixht2FfCktZV9D3Ois-yj4iFrU8yplphRrDWpsdAEgocCK85MjWjeFtKQE8MxlqRtQwttHNGBVflT2DGLuVLBoFVqfsaIX3ZMCH1SZFEzimqXIrRjrmbTulkjXA6jNnHUJGR27nrhv32hRZgfetToPD8CS1DRvWWYa5R0tOkK-Pc9ZB_Ra6wG3Q6KDXqx4XeSDhLjKtJQx047rhQUJ-2OibsqXYXHiex5Daq9uKfXAVFqmDRcccM4rmnFLVwZEcaGnhbVPt6Ao1Jy0fDEp1FeLceiP4LegJNCuJEc8q679h_dcUsOyyVvOenIuJe3Czj87uYXC5vjp_dg5uahUY_qt827LZgNrMuWl3NuQ7WfDPQOTMuPfidNdjOoI3ieNHJ-AENLMp0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+moduli+of+hypersurfaces+in+toric+orbifolds&rft.jtitle=Proceedings+of+the+Edinburgh+Mathematical+Society&rft.au=Bunnett%2C+Dominic&rft.date=2024-05-01&rft.pub=Cambridge+University+Press&rft.issn=0013-0915&rft.eissn=1464-3839&rft.volume=67&rft.issue=2&rft.spage=577&rft.epage=616&rft_id=info:doi/10.1017%2FS0013091524000166&rft.externalDocID=10_1017_S0013091524000166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-0915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-0915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-0915&client=summon