On the moduli of hypersurfaces in toric orbifolds

We construct and study the moduli of stable hypersurfaces in toric orbifolds. Let X be a projective toric orbifold and $\alpha \in \operatorname{Cl}(X)$ an ample class. The moduli space is constructed as a quotient of the linear system $|\alpha|$ by $G = \operatorname{Aut}(X)$. Since the group G is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the Edinburgh Mathematical Society Ročník 67; číslo 2; s. 577 - 616
Hlavní autor: Bunnett, Dominic
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.05.2024
Témata:
ISSN:0013-0915, 1464-3839
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We construct and study the moduli of stable hypersurfaces in toric orbifolds. Let X be a projective toric orbifold and $\alpha \in \operatorname{Cl}(X)$ an ample class. The moduli space is constructed as a quotient of the linear system $|\alpha|$ by $G = \operatorname{Aut}(X)$. Since the group G is non-reductive in general, we use new techniques of non-reductive geometric invariant theory. Using the A-discriminant of Gelfand, Kapranov and Zelevinsky, we prove semistability for quasismooth hypersurfaces of toric orbifolds. Further, we prove the existence of a quasi-projective moduli space of quasismooth hypersurfaces in a weighted projective space when the weighted projective space satisfies a certain condition. We also discuss how to proceed when this condition is not satisfied. We prove that the automorphism group of a quasismooth hypersurface of weighted projective space is finite excluding some low degrees.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0013-0915
1464-3839
DOI:10.1017/S0013091524000166