Classification of short single-lead electrocardiograms (ECGs) for atrial fibrillation detection using piecewise linear spline and XGBoost

Detection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined by the PhysioNet Challenge 2017. More specifically, we used piecewise linea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physiological measurement Ročník 39; číslo 10; s. 104006
Hlavní autoři: Chen, Yao, Wang, Xiao, Jung, Yonghan, Abedi, Vida, Zand, Ramin, Bikak, Marvi, Adibuzzaman, Mohammad
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 24.10.2018
ISSN:1361-6579, 1361-6579
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Detection of atrial fibrillation is important for risk stratification of stroke. We developed a novel methodology to classify electrocardiograms (ECGs) to normal, atrial fibrillation and other cardiac dysrhythmias as defined by the PhysioNet Challenge 2017. More specifically, we used piecewise linear splines for the feature selection and a gradient boosting algorithm for the classifier. In the algorithm, the ECG waveform is fitted by a piecewise linear spline, and morphological features relating to the piecewise linear spline coefficients are extracted. XGBoost is used to classify the morphological coefficients and heart rate variability features. The performance of the algorithm was evaluated by the PhysioNet Challenge database (3658 ECGs classified by experts). Our algorithm achieved an average F score of 81% for a 10-fold cross-validation and also achieved 81% for F score on the independent testing set. This score is similar to the top 9th score (81%) in the official phase of the PhysioNet Challenge 2017. Our algorithm presents a good performance on multi-label short ECG classification with selected morphological features.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ISSN:1361-6579
1361-6579
DOI:10.1088/1361-6579/aadf0f