Strategical Deep Learning for Photonic Bound States in the Continuum
Resonance is instrumental in modern optics and photonics. While one can use numerical simulations to sweep geometric and material parameters of optical structures, these simulations usually require considerably long calculation time and substantial computational resources. Such requirements signific...
Uloženo v:
| Vydáno v: | Laser & photonics reviews Ročník 16; číslo 10 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
Wiley Subscription Services, Inc
01.10.2022
|
| Témata: | |
| ISSN: | 1863-8880, 1863-8899 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Resonance is instrumental in modern optics and photonics. While one can use numerical simulations to sweep geometric and material parameters of optical structures, these simulations usually require considerably long calculation time and substantial computational resources. Such requirements significantly limit their applicability in the inverse design of structures with desired resonances. The recent introduction of artificial intelligence allows for faster spectra predictions of resonance. However, even with relatively large training datasets, current end‐to‐end deep learning approaches generally fail to predict resonances with high‐quality‐factors (Q‐factor) due to their intrinsic non‐linearity and complexity. Here, a resonance informed deep learning (RIDL) strategy for rapid and accurate prediction of the optical response for ultra‐high‐Q‐factor resonances is introduced. By incorporating the resonance information into the deep learning algorithm, the RIDL strategy achieves a high‐accuracy prediction of reflection spectra and photonic band structures while using a comparatively small training dataset. Further, the RIDL strategy to develop an inverse design algorithm for designing a bound state in the continuum (BIC) with infinite Q‐factor is applied. The predicted and measured angle‐resolved band structures of this device show minimal differences. The RIDL strategy is expected to be applied to many other physical phenomena such as Gaussian and Lorentzian resonances.
Photonic bound states in the continuum (BICs) are instrumental for many applications, but designing them is extremely resource‐consuming due to their high‐quality nature. With the help of the adaptive data acquisition (ADA) method, which reduced ∼99% of simulation workload, the resonance‐informed deep learning (RIDL) strategy significantly increased the prediction accuracy and reduced computational time for designing BICs with ultra‐high‐quality‐factors. |
|---|---|
| AbstractList | Resonance is instrumental in modern optics and photonics. While one can use numerical simulations to sweep geometric and material parameters of optical structures, these simulations usually require considerably long calculation time and substantial computational resources. Such requirements significantly limit their applicability in the inverse design of structures with desired resonances. The recent introduction of artificial intelligence allows for faster spectra predictions of resonance. However, even with relatively large training datasets, current end‐to‐end deep learning approaches generally fail to predict resonances with high‐quality‐factors (Q‐factor) due to their intrinsic non‐linearity and complexity. Here, a resonance informed deep learning (RIDL) strategy for rapid and accurate prediction of the optical response for ultra‐high‐Q‐factor resonances is introduced. By incorporating the resonance information into the deep learning algorithm, the RIDL strategy achieves a high‐accuracy prediction of reflection spectra and photonic band structures while using a comparatively small training dataset. Further, the RIDL strategy to develop an inverse design algorithm for designing a bound state in the continuum (BIC) with infinite Q‐factor is applied. The predicted and measured angle‐resolved band structures of this device show minimal differences. The RIDL strategy is expected to be applied to many other physical phenomena such as Gaussian and Lorentzian resonances.
Photonic bound states in the continuum (BICs) are instrumental for many applications, but designing them is extremely resource‐consuming due to their high‐quality nature. With the help of the adaptive data acquisition (ADA) method, which reduced ∼99% of simulation workload, the resonance‐informed deep learning (RIDL) strategy significantly increased the prediction accuracy and reduced computational time for designing BICs with ultra‐high‐quality‐factors. Resonance is instrumental in modern optics and photonics. While one can use numerical simulations to sweep geometric and material parameters of optical structures, these simulations usually require considerably long calculation time and substantial computational resources. Such requirements significantly limit their applicability in the inverse design of structures with desired resonances. The recent introduction of artificial intelligence allows for faster spectra predictions of resonance. However, even with relatively large training datasets, current end‐to‐end deep learning approaches generally fail to predict resonances with high‐quality‐factors (Q‐factor) due to their intrinsic non‐linearity and complexity. Here, a resonance informed deep learning (RIDL) strategy for rapid and accurate prediction of the optical response for ultra‐high‐Q‐factor resonances is introduced. By incorporating the resonance information into the deep learning algorithm, the RIDL strategy achieves a high‐accuracy prediction of reflection spectra and photonic band structures while using a comparatively small training dataset. Further, the RIDL strategy to develop an inverse design algorithm for designing a bound state in the continuum (BIC) with infinite Q‐factor is applied. The predicted and measured angle‐resolved band structures of this device show minimal differences. The RIDL strategy is expected to be applied to many other physical phenomena such as Gaussian and Lorentzian resonances. |
| Author | Ma, Xuezhi Xu, Da Cunha, Preston Liu, Ming Hipwell, M. Cynthia Ma, Yuan Wang, Jiafei Lan, Shoufeng Kudtarkar, Kaushik Chen, Yixin Liu, Qiushi Wong, Zi Jing |
| Author_xml | – sequence: 1 givenname: Xuezhi surname: Ma fullname: Ma, Xuezhi organization: Texas A&M University – sequence: 2 givenname: Yuan surname: Ma fullname: Ma, Yuan organization: The Hong Kong Polytechnic University – sequence: 3 givenname: Preston surname: Cunha fullname: Cunha, Preston organization: Texas A&M University – sequence: 4 givenname: Qiushi surname: Liu fullname: Liu, Qiushi organization: University of California – sequence: 5 givenname: Kaushik surname: Kudtarkar fullname: Kudtarkar, Kaushik organization: Texas A&M University – sequence: 6 givenname: Da surname: Xu fullname: Xu, Da organization: University of California – sequence: 7 givenname: Jiafei surname: Wang fullname: Wang, Jiafei organization: Texas A&M University – sequence: 8 givenname: Yixin surname: Chen fullname: Chen, Yixin organization: Texas A&M University – sequence: 9 givenname: Zi Jing surname: Wong fullname: Wong, Zi Jing organization: Texas A&M University – sequence: 10 givenname: Ming surname: Liu fullname: Liu, Ming organization: University of California – sequence: 11 givenname: M. Cynthia surname: Hipwell fullname: Hipwell, M. Cynthia organization: Texas A&M University – sequence: 12 givenname: Shoufeng orcidid: 0000-0003-2108-6774 surname: Lan fullname: Lan, Shoufeng email: shoufeng@tamu.edu organization: Texas A&M University |
| BookMark | eNqFkM1LAzEQxYNUsK1ePQc8tyab_UiO2voFCy1WzyG7mbQp22TN7iL9791SqSCIc5kZeL-ZxxuhgfMOELqmZEoJiW6r2odpRKJ-SRN-hoaUp2zCuRCD08zJBRo1zZaQpK90iOarNqgW1rZUFZ4D1DgHFZx1a2x8wMuNb72zJb73ndN41fbaBluH2w3gmXetdV23u0TnRlUNXH33MXp_fHibPU_yxdPL7C6flIxmfAKFLnQsYuAi04YCgKKRYCIluhRaU1JwZURBVZGmJotNAppkOjFAAGKmYzZGN8e7dfAfHTSt3PouuP6ljLKIpSxmPOpV8VFVBt80AYwsbe_b9m6DspWkRB7ykoe85CmvHpv-wupgdyrs_wbEEfi0Fez_Uct8uXj9Yb8AVz-BOA |
| CitedBy_id | crossref_primary_10_1088_1361_6463_ad3bbf crossref_primary_10_3390_sym15081611 crossref_primary_10_1002_lpor_202401520 crossref_primary_10_1364_OE_557837 crossref_primary_10_1002_advs_202206236 crossref_primary_10_1016_j_optlastec_2025_112500 crossref_primary_10_1515_nanoph_2025_0049 crossref_primary_10_3390_photonics11030219 crossref_primary_10_1002_lpor_202300592 crossref_primary_10_1007_s11433_024_2493_5 crossref_primary_10_1088_2053_1591_ad9dbc crossref_primary_10_1002_advs_202414344 crossref_primary_10_3390_app13127146 crossref_primary_10_1002_adom_202402788 crossref_primary_10_1038_s41598_025_16192_1 crossref_primary_10_1002_adom_202400296 crossref_primary_10_1364_OE_566457 |
| Cites_doi | 10.1038/s41565-019-0362-9 10.1021/acs.nanolett.0c01771 10.1016/j.optlaseng.2011.10.005 10.1038/nature12289 10.1038/s41566-020-0685-y 10.1038/s41578-020-00260-1 10.1002/adom.201200025 10.1016/j.jcp.2019.05.024 10.1364/OE.8.000173 10.1063/1.4823575 10.1021/acs.nanolett.9b01857 10.1021/acs.nanolett.8b03171 10.1021/acsphotonics.1c00915 10.1103/PhysRevLett.109.067401 10.1021/acsphotonics.9b01703 10.1038/natrevmats.2016.48 10.1021/acsnano.8b03569 10.1038/s42254-020-0224-2 10.1002/lpor.202000422 10.1364/OL.41.002145 10.1038/nmat2810 10.1038/s42005-018-0058-8 10.1126/sciadv.aar4206 10.1021/acs.nanolett.0c00403 10.1021/acs.nanolett.0c00454 10.1021/acs.nanolett.0c01624 10.1063/1.5033327 10.1126/science.abc4975 10.1515/nanoph-2020-0524 10.1016/j.jcp.2018.10.045 10.1002/lpor.201600312 10.1126/science.220.4598.671 10.1515/nanoph-2020-0197 10.1038/nphoton.2017.142 10.1002/adma.201705331 10.1103/PhysRev.124.1866 10.1021/acsphotonics.0c00960 10.1021/acsphotonics.9b00966 10.1038/nature14290 10.1038/s41586-019-1664-7 10.1021/acsphotonics.0c01058 10.1088/0256-307X/32/4/045202 10.1038/lsa.2017.17 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1002/lpor.202100658 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1863-8899 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_lpor_202100658 LPOR202100658 |
| Genre | article |
| GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c3178-ebdbd494e897df1eeea1293960dc9dd10b8af9b1ab66f74f5ed07d5fe0ee43d43 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000836997600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1863-8880 |
| IngestDate | Fri Jul 25 12:10:14 EDT 2025 Sat Nov 29 06:44:46 EST 2025 Tue Nov 18 20:55:28 EST 2025 Wed Jan 22 16:24:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3178-ebdbd494e897df1eeea1293960dc9dd10b8af9b1ab66f74f5ed07d5fe0ee43d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2108-6774 |
| PQID | 2723634382 |
| PQPubID | 1016358 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2723634382 crossref_citationtrail_10_1002_lpor_202100658 crossref_primary_10_1002_lpor_202100658 wiley_primary_10_1002_lpor_202100658_LPOR202100658 |
| PublicationCentury | 2000 |
| PublicationDate | October 2022 2022-10-00 20221001 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Laser & photonics reviews |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 8 2021; 6 2013; 1 2019; 6 2020; 20 2021 2021 2021; 15 15 8 2018 2017; 30 6 2010 2015; 520 2019; 14 2015; 32 2013; 103 2019; 19 2019 2019; 378 394 2012; 109 2012; 50 2020; 7 2018; 18 2012; 251 2021; 10 2016; 1 2020; 2 2018; 4 1983; 220 2018; 1 2017; 11 2018; 112 2020; 370 2020; 9 2001; 8 2013; 499 2016; 41 1961; 124 2018; 12 2019; 574 2010; 9 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_9_2 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 Xu L. (e_1_2_8_27_1) 2020; 2 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 Lemaréchal C. (e_1_2_8_36_1) 2012; 251 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_19_3 Torrey L. (e_1_2_8_40_1) 2010 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_33_2 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 109 year: 2012 publication-title: Phys. Rev. Lett. – volume: 251 start-page: 10 year: 2012 publication-title: Doc Math Extra – volume: 6 start-page: 3196 year: 2019 publication-title: ACS Photonics – volume: 32 year: 2015 publication-title: Chin. Phys. Lett. – volume: 30 6 year: 2018 2017 publication-title: Adv. Mater. Light: Sci. Appl. – volume: 20 start-page: 5655 year: 2020 publication-title: Nano Lett. – volume: 15 15 8 start-page: 77 34 year: 2021 2021 2021 publication-title: Nat. Photonics Laser Photonics Rev. ACS Photonics – volume: 112 year: 2018 publication-title: Appl. Phys. Lett. – volume: 520 start-page: 69 year: 2015 publication-title: Nature – volume: 2 start-page: 538 year: 2020 publication-title: Nat. Rev. Phys. – volume: 1 start-page: 61 year: 2013 publication-title: Adv. Opt. Mater. – volume: 20 start-page: 3513 year: 2020 publication-title: Nano Lett. – volume: 14 start-page: 320 year: 2019 publication-title: Nat. Nanotechnol. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 9 start-page: 4183 year: 2020 publication-title: Nanophotonics – volume: 1 start-page: 57 year: 2018 publication-title: Commun. Phys. – volume: 8 start-page: 455 year: 2021 publication-title: ACS Photonics – volume: 7 start-page: 873 year: 2020 publication-title: ACS Photonics – volume: 378 394 start-page: 686 56 year: 2019 2019 publication-title: J. Comput. Phys. J. Comput. Phys. – volume: 370 start-page: 600 year: 2020 publication-title: Science – volume: 6 start-page: 679 year: 2021 publication-title: Nat. Rev. Mater. – volume: 20 start-page: 6357 year: 2020 publication-title: Nano Lett. – volume: 12 start-page: 6326 year: 2018 publication-title: ACS Nano – volume: 18 start-page: 6570 year: 2018 publication-title: Nano Lett. – year: 2010 – volume: 19 start-page: 5366 year: 2019 publication-title: Nano Lett. – volume: 8 start-page: 173 year: 2001 publication-title: Opt. Express – volume: 8 start-page: 2987 year: 2021 publication-title: ACS Photonics – volume: 103 year: 2013 publication-title: Appl. Phys. Lett. – volume: 10 start-page: 1031 year: 2021 publication-title: Nanophotonics – volume: 124 start-page: 1866 year: 1961 publication-title: Phys. Rev. – volume: 9 start-page: 707 year: 2010 publication-title: Nat. Mater. – volume: 574 start-page: 501 year: 2019 publication-title: Nature – volume: 11 year: 2017 publication-title: Laser Photonics Rev. – volume: 220 start-page: 671 year: 1983 publication-title: Science – volume: 11 start-page: 543 year: 2017 publication-title: Nat. Photonics – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 499 start-page: 188 year: 2013 publication-title: Nature – volume: 41 start-page: 2145 year: 2016 publication-title: Opt. Lett. – volume: 2 year: 2020 publication-title: Adv. Photonics – volume: 50 start-page: 473 year: 2012 publication-title: Opt. Lasers Eng. – volume: 20 start-page: 5292 year: 2020 publication-title: Nano Lett. – ident: e_1_2_8_12_1 doi: 10.1038/s41565-019-0362-9 – ident: e_1_2_8_2_1 doi: 10.1021/acs.nanolett.0c01771 – ident: e_1_2_8_35_1 doi: 10.1016/j.optlaseng.2011.10.005 – ident: e_1_2_8_8_1 doi: 10.1038/nature12289 – ident: e_1_2_8_19_1 doi: 10.1038/s41566-020-0685-y – volume: 2 start-page: 026003 year: 2020 ident: e_1_2_8_27_1 publication-title: Adv. Photonics – ident: e_1_2_8_17_1 doi: 10.1038/s41578-020-00260-1 – ident: e_1_2_8_14_1 doi: 10.1002/adom.201200025 – ident: e_1_2_8_33_2 doi: 10.1016/j.jcp.2019.05.024 – ident: e_1_2_8_38_1 doi: 10.1364/OE.8.000173 – ident: e_1_2_8_7_1 doi: 10.1063/1.4823575 – ident: e_1_2_8_22_1 doi: 10.1021/acs.nanolett.9b01857 – ident: e_1_2_8_31_1 doi: 10.1021/acs.nanolett.8b03171 – ident: e_1_2_8_28_1 doi: 10.1021/acsphotonics.1c00915 – ident: e_1_2_8_39_1 doi: 10.1103/PhysRevLett.109.067401 – ident: e_1_2_8_23_1 doi: 10.1021/acsphotonics.9b01703 – ident: e_1_2_8_16_1 doi: 10.1038/natrevmats.2016.48 – ident: e_1_2_8_21_1 doi: 10.1021/acsnano.8b03569 – ident: e_1_2_8_29_1 doi: 10.1038/s42254-020-0224-2 – ident: e_1_2_8_19_2 doi: 10.1002/lpor.202000422 – ident: e_1_2_8_10_1 doi: 10.1364/OL.41.002145 – ident: e_1_2_8_15_1 doi: 10.1038/nmat2810 – ident: e_1_2_8_25_1 doi: 10.1038/s42005-018-0058-8 – volume-title: Information Science Reference year: 2010 ident: e_1_2_8_40_1 – ident: e_1_2_8_20_1 doi: 10.1126/sciadv.aar4206 – ident: e_1_2_8_3_1 doi: 10.1021/acs.nanolett.0c00403 – ident: e_1_2_8_4_1 doi: 10.1021/acs.nanolett.0c00454 – ident: e_1_2_8_30_1 doi: 10.1021/acs.nanolett.0c01624 – ident: e_1_2_8_26_1 doi: 10.1063/1.5033327 – ident: e_1_2_8_41_1 doi: 10.1126/science.abc4975 – ident: e_1_2_8_1_1 doi: 10.1515/nanoph-2020-0524 – ident: e_1_2_8_33_1 doi: 10.1016/j.jcp.2018.10.045 – ident: e_1_2_8_11_1 doi: 10.1002/lpor.201600312 – ident: e_1_2_8_37_1 doi: 10.1126/science.220.4598.671 – ident: e_1_2_8_24_1 doi: 10.1515/nanoph-2020-0197 – ident: e_1_2_8_6_1 doi: 10.1038/nphoton.2017.142 – ident: e_1_2_8_9_1 doi: 10.1002/adma.201705331 – ident: e_1_2_8_5_1 doi: 10.1103/PhysRev.124.1866 – ident: e_1_2_8_19_3 doi: 10.1021/acsphotonics.0c00960 – ident: e_1_2_8_32_1 doi: 10.1021/acsphotonics.9b00966 – ident: e_1_2_8_13_1 doi: 10.1038/nature14290 – ident: e_1_2_8_34_1 doi: 10.1038/s41586-019-1664-7 – ident: e_1_2_8_18_1 doi: 10.1021/acsphotonics.0c01058 – ident: e_1_2_8_42_1 doi: 10.1088/0256-307X/32/4/045202 – ident: e_1_2_8_9_2 doi: 10.1038/lsa.2017.17 – volume: 251 start-page: 10 year: 2012 ident: e_1_2_8_36_1 publication-title: Doc Math Extra |
| SSID | ssj0055556 |
| Score | 2.479243 |
| Snippet | Resonance is instrumental in modern optics and photonics. While one can use numerical simulations to sweep geometric and material parameters of optical... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Artificial intelligence bound states in the continuum (BICs) Computer simulation Datasets Deep learning Fano resonance high‐quality‐factor resonance design Inverse design Machine learning Photonics resonance‐informed‐deep‐learning (RIDL) strategy semi‐supervised deep learning Spectra Training |
| Title | Strategical Deep Learning for Photonic Bound States in the Continuum |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202100658 https://www.proquest.com/docview/2723634382 |
| Volume | 16 |
| WOSCitedRecordID | wos000836997600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1863-8899 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055556 issn: 1863-8880 databaseCode: DRFUL dateStart: 20070101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oePAiPiOKZg8mnhra7WO7RxWJB4KEiOHWdLu7SoKFUPD3O9sH4MGYaG9Ntptmnt90O98A3GiEDLH0HSv2FcMCxRGW4NqxpGMnoeCMh_mJ7muP9fvheMwHW138BT_E-oOb8Yw8XhsHj0XW3pCGThGfYn2HJYvJortQp2i8Xg3qnWF31KuisY9X3mEUBq6F1Z5dETfatP19h--JaYM2tzFrnnS6jf-_7iEclICT3BUWcgQ7Kj2GRgk-Sena2Ql0Kp5aVBrpKDUnJfXqG0FcSwbvs6Vh0SX3Zg4TKTAqmaQEASQxFFeTdLX6OIVR9_Hl4ckqRyxYCQKH0FJCCulxT4WcSe0opWIDALCskQmXqDARxpoLJxZBoJmnfSVtJn2tbKU8V3ruGdTSWarOgQTc14zHCUYB4WktOY1FKHC958sAUWgTrEq-UVLyj5sxGNOoYE6mkRFRtBZRE27X6-cF88aPK1uVuqLSA7OIMuoGrjnmbALNFfPLLlFv8Dxc31385aFL2KemOyL_168FteVipa5gL_lcTrLFdWmZXxkx5Os |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oFPTFuzidmgfBp2LvbR7VOSbWOcTJ3krTJDqY3djF3-9Jm3buQQSxb4U0lJzbd5Kc7wBcSIQMCfcsI_FEgAmKxQxGpWVwy0xDRgMa5ie6r1HQ6YT9Pu3q24SqFqbgh6g23JRl5P5aGbjakL5asIYOEaBigoc5iwqjq7Dmoi55NVhrPrd6UemOPXzyEqPQdwxM98ySudG0r5ZnWI5MC7j5HbTmUae1_Q__uwNbGnKS60JHdmFFZHuwreEn0cY93YdmyVSLYiNNIcZEk6--EUS2pPs-mikeXXKjOjGRAqWSQUYQQhJFcjXI5vOPA-i17l5u24ZusmCkCB1CQzDOuEtdEdKAS0sIkSgIgIkNTylHkbEwkZRZCfN9GbjSE9wMuCeFKYTrcNc5hFo2ysQREJ96MqBJin6AuVJyaicsZDje9biPOLQORrnAcaoZyFUjjGFccCfbsVqiuFqiOlxW48cF98aPIxulvGJtg9PYDmzHd9RBZx3sXDK_zBJH3afn6u34Lx-dw0b75TGKo_vOwwls2qpWIr_514DabDIXp7Cefs4G08mZVtMv2nXo2w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90E_HF-YnTqXkQfCrrd5tHdQ7FMsdwsrfSNIkOZjf24d_vpU039yCC2LdCEspd7u53Te53AFcSIUPCPctIPBFggmIxg1FpGdwy05DRgIb5ie5rFHQ64WBAu_o2oaqFKfghlj_clGXk_loZuJhw2Vyxho4QoGKChzmLCqObUHU96qNtVlu9dj8q3bGHT15iFPqOgemeWTI3mnZzfYX1yLSCm99Bax512rV_-N492NWQk9wUe2QfNkR2ADUNP4k27tkhtEqmWlQbaQkxIZp89Y0gsiXd9_Fc8eiSW9WJiRQolQwzghCSKJKrYbZYfBxBv33_cvdg6CYLRorQITQE44y71BUhDbi0hBCJggCY2PCUclQZCxNJmZUw35eBKz3BzYB7UphCuA53nWOoZONMnADxqScDmqToB5grJad2wkKG412P-4hD62CUAo5TzUCuGmGM4oI72Y6ViOKliOpwvRw_Kbg3fhzZKPUVaxucxXZgO76jDjrrYOea-WWVOOo-95Zvp3-ZdAnb3VY7jh47T2ewY6tSifziXwMq8-lCnMNW-jkfzqYXepd-AYag6FY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategical+Deep+Learning+for+Photonic+Bound+States+in+the+Continuum&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Ma%2C+Xuezhi&rft.au=Ma%2C+Yuan&rft.au=Cunha%2C+Preston&rft.au=Liu%2C+Qiushi&rft.date=2022-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=16&rft.issue=10&rft_id=info:doi/10.1002%2Flpor.202100658&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |