Strategical Deep Learning for Photonic Bound States in the Continuum

Resonance is instrumental in modern optics and photonics. While one can use numerical simulations to sweep geometric and material parameters of optical structures, these simulations usually require considerably long calculation time and substantial computational resources. Such requirements signific...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Laser & photonics reviews Ročník 16; číslo 10
Hlavní autoři: Ma, Xuezhi, Ma, Yuan, Cunha, Preston, Liu, Qiushi, Kudtarkar, Kaushik, Xu, Da, Wang, Jiafei, Chen, Yixin, Wong, Zi Jing, Liu, Ming, Hipwell, M. Cynthia, Lan, Shoufeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim Wiley Subscription Services, Inc 01.10.2022
Témata:
ISSN:1863-8880, 1863-8899
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Resonance is instrumental in modern optics and photonics. While one can use numerical simulations to sweep geometric and material parameters of optical structures, these simulations usually require considerably long calculation time and substantial computational resources. Such requirements significantly limit their applicability in the inverse design of structures with desired resonances. The recent introduction of artificial intelligence allows for faster spectra predictions of resonance. However, even with relatively large training datasets, current end‐to‐end deep learning approaches generally fail to predict resonances with high‐quality‐factors (Q‐factor) due to their intrinsic non‐linearity and complexity. Here, a resonance informed deep learning (RIDL) strategy for rapid and accurate prediction of the optical response for ultra‐high‐Q‐factor resonances is introduced. By incorporating the resonance information into the deep learning algorithm, the RIDL strategy achieves a high‐accuracy prediction of reflection spectra and photonic band structures while using a comparatively small training dataset. Further, the RIDL strategy to develop an inverse design algorithm for designing a bound state in the continuum (BIC) with infinite Q‐factor is applied. The predicted and measured angle‐resolved band structures of this device show minimal differences. The RIDL strategy is expected to be applied to many other physical phenomena such as Gaussian and Lorentzian resonances. Photonic bound states in the continuum (BICs) are instrumental for many applications, but designing them is extremely resource‐consuming due to their high‐quality nature. With the help of the adaptive data acquisition (ADA) method, which reduced ∼99% of simulation workload, the resonance‐informed deep learning (RIDL) strategy significantly increased the prediction accuracy and reduced computational time for designing BICs with ultra‐high‐quality‐factors. 
AbstractList Resonance is instrumental in modern optics and photonics. While one can use numerical simulations to sweep geometric and material parameters of optical structures, these simulations usually require considerably long calculation time and substantial computational resources. Such requirements significantly limit their applicability in the inverse design of structures with desired resonances. The recent introduction of artificial intelligence allows for faster spectra predictions of resonance. However, even with relatively large training datasets, current end‐to‐end deep learning approaches generally fail to predict resonances with high‐quality‐factors (Q‐factor) due to their intrinsic non‐linearity and complexity. Here, a resonance informed deep learning (RIDL) strategy for rapid and accurate prediction of the optical response for ultra‐high‐Q‐factor resonances is introduced. By incorporating the resonance information into the deep learning algorithm, the RIDL strategy achieves a high‐accuracy prediction of reflection spectra and photonic band structures while using a comparatively small training dataset. Further, the RIDL strategy to develop an inverse design algorithm for designing a bound state in the continuum (BIC) with infinite Q‐factor is applied. The predicted and measured angle‐resolved band structures of this device show minimal differences. The RIDL strategy is expected to be applied to many other physical phenomena such as Gaussian and Lorentzian resonances. Photonic bound states in the continuum (BICs) are instrumental for many applications, but designing them is extremely resource‐consuming due to their high‐quality nature. With the help of the adaptive data acquisition (ADA) method, which reduced ∼99% of simulation workload, the resonance‐informed deep learning (RIDL) strategy significantly increased the prediction accuracy and reduced computational time for designing BICs with ultra‐high‐quality‐factors. 
Resonance is instrumental in modern optics and photonics. While one can use numerical simulations to sweep geometric and material parameters of optical structures, these simulations usually require considerably long calculation time and substantial computational resources. Such requirements significantly limit their applicability in the inverse design of structures with desired resonances. The recent introduction of artificial intelligence allows for faster spectra predictions of resonance. However, even with relatively large training datasets, current end‐to‐end deep learning approaches generally fail to predict resonances with high‐quality‐factors (Q‐factor) due to their intrinsic non‐linearity and complexity. Here, a resonance informed deep learning (RIDL) strategy for rapid and accurate prediction of the optical response for ultra‐high‐Q‐factor resonances is introduced. By incorporating the resonance information into the deep learning algorithm, the RIDL strategy achieves a high‐accuracy prediction of reflection spectra and photonic band structures while using a comparatively small training dataset. Further, the RIDL strategy to develop an inverse design algorithm for designing a bound state in the continuum (BIC) with infinite Q‐factor is applied. The predicted and measured angle‐resolved band structures of this device show minimal differences. The RIDL strategy is expected to be applied to many other physical phenomena such as Gaussian and Lorentzian resonances.
Author Ma, Xuezhi
Xu, Da
Cunha, Preston
Liu, Ming
Hipwell, M. Cynthia
Ma, Yuan
Wang, Jiafei
Lan, Shoufeng
Kudtarkar, Kaushik
Chen, Yixin
Liu, Qiushi
Wong, Zi Jing
Author_xml – sequence: 1
  givenname: Xuezhi
  surname: Ma
  fullname: Ma, Xuezhi
  organization: Texas A&M University
– sequence: 2
  givenname: Yuan
  surname: Ma
  fullname: Ma, Yuan
  organization: The Hong Kong Polytechnic University
– sequence: 3
  givenname: Preston
  surname: Cunha
  fullname: Cunha, Preston
  organization: Texas A&M University
– sequence: 4
  givenname: Qiushi
  surname: Liu
  fullname: Liu, Qiushi
  organization: University of California
– sequence: 5
  givenname: Kaushik
  surname: Kudtarkar
  fullname: Kudtarkar, Kaushik
  organization: Texas A&M University
– sequence: 6
  givenname: Da
  surname: Xu
  fullname: Xu, Da
  organization: University of California
– sequence: 7
  givenname: Jiafei
  surname: Wang
  fullname: Wang, Jiafei
  organization: Texas A&M University
– sequence: 8
  givenname: Yixin
  surname: Chen
  fullname: Chen, Yixin
  organization: Texas A&M University
– sequence: 9
  givenname: Zi Jing
  surname: Wong
  fullname: Wong, Zi Jing
  organization: Texas A&M University
– sequence: 10
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  organization: University of California
– sequence: 11
  givenname: M. Cynthia
  surname: Hipwell
  fullname: Hipwell, M. Cynthia
  organization: Texas A&M University
– sequence: 12
  givenname: Shoufeng
  orcidid: 0000-0003-2108-6774
  surname: Lan
  fullname: Lan, Shoufeng
  email: shoufeng@tamu.edu
  organization: Texas A&M University
BookMark eNqFkM1LAzEQxYNUsK1ePQc8tyab_UiO2voFCy1WzyG7mbQp22TN7iL9791SqSCIc5kZeL-ZxxuhgfMOELqmZEoJiW6r2odpRKJ-SRN-hoaUp2zCuRCD08zJBRo1zZaQpK90iOarNqgW1rZUFZ4D1DgHFZx1a2x8wMuNb72zJb73ndN41fbaBluH2w3gmXetdV23u0TnRlUNXH33MXp_fHibPU_yxdPL7C6flIxmfAKFLnQsYuAi04YCgKKRYCIluhRaU1JwZURBVZGmJotNAppkOjFAAGKmYzZGN8e7dfAfHTSt3PouuP6ljLKIpSxmPOpV8VFVBt80AYwsbe_b9m6DspWkRB7ykoe85CmvHpv-wupgdyrs_wbEEfi0Fez_Uct8uXj9Yb8AVz-BOA
CitedBy_id crossref_primary_10_1088_1361_6463_ad3bbf
crossref_primary_10_3390_sym15081611
crossref_primary_10_1002_lpor_202401520
crossref_primary_10_1364_OE_557837
crossref_primary_10_1002_advs_202206236
crossref_primary_10_1016_j_optlastec_2025_112500
crossref_primary_10_1515_nanoph_2025_0049
crossref_primary_10_3390_photonics11030219
crossref_primary_10_1002_lpor_202300592
crossref_primary_10_1007_s11433_024_2493_5
crossref_primary_10_1088_2053_1591_ad9dbc
crossref_primary_10_1002_advs_202414344
crossref_primary_10_3390_app13127146
crossref_primary_10_1002_adom_202402788
crossref_primary_10_1038_s41598_025_16192_1
crossref_primary_10_1002_adom_202400296
crossref_primary_10_1364_OE_566457
Cites_doi 10.1038/s41565-019-0362-9
10.1021/acs.nanolett.0c01771
10.1016/j.optlaseng.2011.10.005
10.1038/nature12289
10.1038/s41566-020-0685-y
10.1038/s41578-020-00260-1
10.1002/adom.201200025
10.1016/j.jcp.2019.05.024
10.1364/OE.8.000173
10.1063/1.4823575
10.1021/acs.nanolett.9b01857
10.1021/acs.nanolett.8b03171
10.1021/acsphotonics.1c00915
10.1103/PhysRevLett.109.067401
10.1021/acsphotonics.9b01703
10.1038/natrevmats.2016.48
10.1021/acsnano.8b03569
10.1038/s42254-020-0224-2
10.1002/lpor.202000422
10.1364/OL.41.002145
10.1038/nmat2810
10.1038/s42005-018-0058-8
10.1126/sciadv.aar4206
10.1021/acs.nanolett.0c00403
10.1021/acs.nanolett.0c00454
10.1021/acs.nanolett.0c01624
10.1063/1.5033327
10.1126/science.abc4975
10.1515/nanoph-2020-0524
10.1016/j.jcp.2018.10.045
10.1002/lpor.201600312
10.1126/science.220.4598.671
10.1515/nanoph-2020-0197
10.1038/nphoton.2017.142
10.1002/adma.201705331
10.1103/PhysRev.124.1866
10.1021/acsphotonics.0c00960
10.1021/acsphotonics.9b00966
10.1038/nature14290
10.1038/s41586-019-1664-7
10.1021/acsphotonics.0c01058
10.1088/0256-307X/32/4/045202
10.1038/lsa.2017.17
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202100658
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID 10_1002_lpor_202100658
LPOR202100658
Genre article
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c3178-ebdbd494e897df1eeea1293960dc9dd10b8af9b1ab66f74f5ed07d5fe0ee43d43
IEDL.DBID DRFUL
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000836997600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-8880
IngestDate Fri Jul 25 12:10:14 EDT 2025
Sat Nov 29 06:44:46 EST 2025
Tue Nov 18 20:55:28 EST 2025
Wed Jan 22 16:24:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3178-ebdbd494e897df1eeea1293960dc9dd10b8af9b1ab66f74f5ed07d5fe0ee43d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2108-6774
PQID 2723634382
PQPubID 1016358
PageCount 11
ParticipantIDs proquest_journals_2723634382
crossref_citationtrail_10_1002_lpor_202100658
crossref_primary_10_1002_lpor_202100658
wiley_primary_10_1002_lpor_202100658_LPOR202100658
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2021; 6
2013; 1
2019; 6
2020; 20
2021 2021 2021; 15 15 8
2018 2017; 30 6
2010
2015; 520
2019; 14
2015; 32
2013; 103
2019; 19
2019 2019; 378 394
2012; 109
2012; 50
2020; 7
2018; 18
2012; 251
2021; 10
2016; 1
2020; 2
2018; 4
1983; 220
2018; 1
2017; 11
2018; 112
2020; 370
2020; 9
2001; 8
2013; 499
2016; 41
1961; 124
2018; 12
2019; 574
2010; 9
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_9_2
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
Xu L. (e_1_2_8_27_1) 2020; 2
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
Lemaréchal C. (e_1_2_8_36_1) 2012; 251
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_19_3
Torrey L. (e_1_2_8_40_1) 2010
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_33_2
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 251
  start-page: 10
  year: 2012
  publication-title: Doc Math Extra
– volume: 6
  start-page: 3196
  year: 2019
  publication-title: ACS Photonics
– volume: 32
  year: 2015
  publication-title: Chin. Phys. Lett.
– volume: 30 6
  year: 2018 2017
  publication-title: Adv. Mater. Light: Sci. Appl.
– volume: 20
  start-page: 5655
  year: 2020
  publication-title: Nano Lett.
– volume: 15 15 8
  start-page: 77 34
  year: 2021 2021 2021
  publication-title: Nat. Photonics Laser Photonics Rev. ACS Photonics
– volume: 112
  year: 2018
  publication-title: Appl. Phys. Lett.
– volume: 520
  start-page: 69
  year: 2015
  publication-title: Nature
– volume: 2
  start-page: 538
  year: 2020
  publication-title: Nat. Rev. Phys.
– volume: 1
  start-page: 61
  year: 2013
  publication-title: Adv. Opt. Mater.
– volume: 20
  start-page: 3513
  year: 2020
  publication-title: Nano Lett.
– volume: 14
  start-page: 320
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 9
  start-page: 4183
  year: 2020
  publication-title: Nanophotonics
– volume: 1
  start-page: 57
  year: 2018
  publication-title: Commun. Phys.
– volume: 8
  start-page: 455
  year: 2021
  publication-title: ACS Photonics
– volume: 7
  start-page: 873
  year: 2020
  publication-title: ACS Photonics
– volume: 378 394
  start-page: 686 56
  year: 2019 2019
  publication-title: J. Comput. Phys. J. Comput. Phys.
– volume: 370
  start-page: 600
  year: 2020
  publication-title: Science
– volume: 6
  start-page: 679
  year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 20
  start-page: 6357
  year: 2020
  publication-title: Nano Lett.
– volume: 12
  start-page: 6326
  year: 2018
  publication-title: ACS Nano
– volume: 18
  start-page: 6570
  year: 2018
  publication-title: Nano Lett.
– year: 2010
– volume: 19
  start-page: 5366
  year: 2019
  publication-title: Nano Lett.
– volume: 8
  start-page: 173
  year: 2001
  publication-title: Opt. Express
– volume: 8
  start-page: 2987
  year: 2021
  publication-title: ACS Photonics
– volume: 103
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 1031
  year: 2021
  publication-title: Nanophotonics
– volume: 124
  start-page: 1866
  year: 1961
  publication-title: Phys. Rev.
– volume: 9
  start-page: 707
  year: 2010
  publication-title: Nat. Mater.
– volume: 574
  start-page: 501
  year: 2019
  publication-title: Nature
– volume: 11
  year: 2017
  publication-title: Laser Photonics Rev.
– volume: 220
  start-page: 671
  year: 1983
  publication-title: Science
– volume: 11
  start-page: 543
  year: 2017
  publication-title: Nat. Photonics
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 499
  start-page: 188
  year: 2013
  publication-title: Nature
– volume: 41
  start-page: 2145
  year: 2016
  publication-title: Opt. Lett.
– volume: 2
  year: 2020
  publication-title: Adv. Photonics
– volume: 50
  start-page: 473
  year: 2012
  publication-title: Opt. Lasers Eng.
– volume: 20
  start-page: 5292
  year: 2020
  publication-title: Nano Lett.
– ident: e_1_2_8_12_1
  doi: 10.1038/s41565-019-0362-9
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.nanolett.0c01771
– ident: e_1_2_8_35_1
  doi: 10.1016/j.optlaseng.2011.10.005
– ident: e_1_2_8_8_1
  doi: 10.1038/nature12289
– ident: e_1_2_8_19_1
  doi: 10.1038/s41566-020-0685-y
– volume: 2
  start-page: 026003
  year: 2020
  ident: e_1_2_8_27_1
  publication-title: Adv. Photonics
– ident: e_1_2_8_17_1
  doi: 10.1038/s41578-020-00260-1
– ident: e_1_2_8_14_1
  doi: 10.1002/adom.201200025
– ident: e_1_2_8_33_2
  doi: 10.1016/j.jcp.2019.05.024
– ident: e_1_2_8_38_1
  doi: 10.1364/OE.8.000173
– ident: e_1_2_8_7_1
  doi: 10.1063/1.4823575
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.nanolett.9b01857
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.nanolett.8b03171
– ident: e_1_2_8_28_1
  doi: 10.1021/acsphotonics.1c00915
– ident: e_1_2_8_39_1
  doi: 10.1103/PhysRevLett.109.067401
– ident: e_1_2_8_23_1
  doi: 10.1021/acsphotonics.9b01703
– ident: e_1_2_8_16_1
  doi: 10.1038/natrevmats.2016.48
– ident: e_1_2_8_21_1
  doi: 10.1021/acsnano.8b03569
– ident: e_1_2_8_29_1
  doi: 10.1038/s42254-020-0224-2
– ident: e_1_2_8_19_2
  doi: 10.1002/lpor.202000422
– ident: e_1_2_8_10_1
  doi: 10.1364/OL.41.002145
– ident: e_1_2_8_15_1
  doi: 10.1038/nmat2810
– ident: e_1_2_8_25_1
  doi: 10.1038/s42005-018-0058-8
– volume-title: Information Science Reference
  year: 2010
  ident: e_1_2_8_40_1
– ident: e_1_2_8_20_1
  doi: 10.1126/sciadv.aar4206
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.nanolett.0c00403
– ident: e_1_2_8_4_1
  doi: 10.1021/acs.nanolett.0c00454
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.nanolett.0c01624
– ident: e_1_2_8_26_1
  doi: 10.1063/1.5033327
– ident: e_1_2_8_41_1
  doi: 10.1126/science.abc4975
– ident: e_1_2_8_1_1
  doi: 10.1515/nanoph-2020-0524
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jcp.2018.10.045
– ident: e_1_2_8_11_1
  doi: 10.1002/lpor.201600312
– ident: e_1_2_8_37_1
  doi: 10.1126/science.220.4598.671
– ident: e_1_2_8_24_1
  doi: 10.1515/nanoph-2020-0197
– ident: e_1_2_8_6_1
  doi: 10.1038/nphoton.2017.142
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.201705331
– ident: e_1_2_8_5_1
  doi: 10.1103/PhysRev.124.1866
– ident: e_1_2_8_19_3
  doi: 10.1021/acsphotonics.0c00960
– ident: e_1_2_8_32_1
  doi: 10.1021/acsphotonics.9b00966
– ident: e_1_2_8_13_1
  doi: 10.1038/nature14290
– ident: e_1_2_8_34_1
  doi: 10.1038/s41586-019-1664-7
– ident: e_1_2_8_18_1
  doi: 10.1021/acsphotonics.0c01058
– ident: e_1_2_8_42_1
  doi: 10.1088/0256-307X/32/4/045202
– ident: e_1_2_8_9_2
  doi: 10.1038/lsa.2017.17
– volume: 251
  start-page: 10
  year: 2012
  ident: e_1_2_8_36_1
  publication-title: Doc Math Extra
SSID ssj0055556
Score 2.4793189
Snippet Resonance is instrumental in modern optics and photonics. While one can use numerical simulations to sweep geometric and material parameters of optical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial intelligence
bound states in the continuum (BICs)
Computer simulation
Datasets
Deep learning
Fano resonance
high‐quality‐factor resonance design
Inverse design
Machine learning
Photonics
resonance‐informed‐deep‐learning (RIDL) strategy
semi‐supervised deep learning
Spectra
Training
Title Strategical Deep Learning for Photonic Bound States in the Continuum
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202100658
https://www.proquest.com/docview/2723634382
Volume 16
WOSCitedRecordID wos000836997600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1863-8899
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055556
  issn: 1863-8880
  databaseCode: DRFUL
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMcfunnw4vyJ0yk5CJ7CujRtmqM6h4ehY6jsVprkRQdaxW3-_Sb9MfUggvZWSEN5ycv7vqbvE4ATJhVGQYBUcyMoj42hylhBlZY2zkKJSQHTuR-K6-tkMpGjL1X8JR9i-cHNe0axXnsHz9Ss-wkNfXL61OV3LmXxUXQVmsxNXt6AZn88uBvWq3HkrqLCKIlD6rK9oAY3Bqz7vYfvgelTbX7VrEXQGbT-_7qbsFEJTnJWzpAtWMF8G1qV-CSVa892oF9zat2gkT7iK6nQqw_E6VoyenyZe4ouOffnMJFSo5JpTpyAJB5xNc0Xi-dduBtc3l5c0eqIBaqdcEgoKqMMlxwTKYztIWLmBYBLa4yWxvQClWRWql6m4tgKbiM0gTCRxQCRh4aHe9DIX3LcB2IYhplUOtPccqF7mVCxkB4gFzEba9MGWts31RV_3B-D8ZSW5GSWehOlSxO14XTZ_rUkb_zYslMPV1p54CxlgoVx6Lc528CKgfmll3Q4uhkv7w7-8tAhrDNfHVH869eBxvxtgUewpt_n09nbcTUzPwDMcOXi
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7RpVK5QClFLI_Wh0o9WWQdJ46P0O0KRLqsECBuUWyPYSUIq33w-7ETZymHCqkit0iOFc3D843t-QbgB5MKkyhCqrkRlKfGUGWsoEpLm5axxKwm07nOxXCY3dzIUbhN6GthGn6I5Yab94x6vfYO7jekD19YQ-8dQHUJnstZfBj9AKvc2VLSgdX-xeAqb5fjxD11iVGWxtSle1HL3Bixw9czvI5ML3Dzb9BaR53Bxjv872dYD5CTHDU2sgkrWH2BjQA_SXDu2Rb0W6ZapzbSR5yQQL56SxyyJaO7x7nn0SXHvhMTaVAqGVfEQUjiSa7G1WLx8BWuBr8vf53Q0GSBagcdMorKKMMlx0wKY3uIWHoI4BIbo6UxvUhlpZWqV6o0tYLbBE0kTGIxQuSx4fE2dKrHCneAGIZxKZUuNbdc6F4pVCqkp5BLmE216QJtBVzowEDuG2HcFw13Miu8iIqliLrwczl-0nBv_HPkfquvIvjgrGCCxWnsDzq7wGrNvDFLkY_OL5Zvu__z0Xf4dHL5Jy_y0-HZHqwxXytR3_zbh858usAD-Kif5uPZ9Fsw02ebBenS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1RT9swEMdPG0zTXsYYQ-uAzQ9IPFmkjmPHj0CpQKu6CgHiLYrtM1QqoaItnx87cQo8ICS0vEVyrMjns_-X-H4HsMuUxixJkBpuJeXCWqqtk1Qb5USZKsxrmM7lQA6H-dWVGsXThCEXpuFDLD-4Bc-o1-vg4Di1bv-JGjrxAtUHeD5mCdvoR1jlmRLeN1d7Z_2LQbscZ_6qU4xykVIf7iUtuTFh-y97eLkzPcnN56K13nX6a__hfb_B1yg5yUEzR9bhA1bfYS3KTxKde7YBvZZU681GeohTEuGr18QrWzK6uZsHji45DJWYSKNSybgiXkKSALkaV4vF7Q-46B-fH53QWGSBGi8dcoraassVx1xJ67qIWAYJ4AMba5S13UTnpVO6W2ohnOQuQ5tImzlMEHlqeboJK9VdhT-BWIZpqbQpDXdcmm4ptZAqIOQy5oSxHaDtABcmEshDIYxJ0bCTWRGGqFgOUQf2lu2nDXvj1Zbbrb2K6IOzgkmWijT86OwAqy3zRi_FYPTvbHn36z0P_YHPo16_GJwO_27BFxZSJeqDf9uwMr9f4A58Mg_z8ez-d5ylj0Y56U0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strategical+Deep+Learning+for+Photonic+Bound+States+in+the+Continuum&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Ma%2C+Xuezhi&rft.au=Ma%2C+Yuan&rft.au=Cunha%2C+Preston&rft.au=Liu%2C+Qiushi&rft.date=2022-10-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=16&rft.issue=10&rft_id=info:doi/10.1002%2Flpor.202100658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_lpor_202100658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon