Hydrogen Production from Water Splitting through Photocatalytic Activity of Carbon‐Based Materials

Hydrogen is a free, limitless, and environmentally friendly resource. To enhance the production performance of hydrogen by photocatalytic water splitting, its preparation and application was investigated using carbon‐based materials (graphene, graphite, carbon nanotubes, activated carbon). Photocata...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering & technology Vol. 46; no. 3; pp. 420 - 434
Main Authors: Reza, M. Sumon, Ahmad, Nurnazurah Binti Haji, Afroze, Shammya, Taweekun, Juntakan, Sharifpur, Mohsen, Azad, Abul Kalam
Format: Journal Article
Language:English
Published: Frankfurt Wiley Subscription Services, Inc 01.03.2023
Subjects:
ISSN:0930-7516, 1521-4125
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrogen is a free, limitless, and environmentally friendly resource. To enhance the production performance of hydrogen by photocatalytic water splitting, its preparation and application was investigated using carbon‐based materials (graphene, graphite, carbon nanotubes, activated carbon). Photocatalytic hydrogen processing is among the most promising strategies for ensuring long‐term energy stability and preventing further environmental degradation. The selection of co‐catalysts and sacrificial agents to support the main catalyst is crucial for increasing hydrogen production. Several analyses were conducted to examine the characteristics as well as the use of various parameters to determine how carbonaceous materials would improve hydrogen production. Carbonaceous materials enable hydrogen production from water splitting via photocatalytic process. The combination of graphene with semiconductors plays a significant role in this process for outstanding physical and chemical properties. The overall performance of the carbon‐based materials as photocatalysts for hydrogen production from water splitting is promising for clean energy production.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0930-7516
1521-4125
DOI:10.1002/ceat.202100513