Second‐order cone programming models for the unitary weighted Weber problem and for the minimum sum of the squares clustering problem

In this work, new mixed integer nonlinear optimization models are proposed for two clustering problems: the unitary weighted Weber problem and the minimum sum of squares clustering. The proposed formulations are convex quadratic models with linear and second‐order cone constraints that can be effici...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International transactions in operational research Ročník 32; číslo 2; s. 961 - 972
Hlavní autoři: Linhares, Marcella Braga de Assis, Pinto, Renan Vicente, Maculan, Nelson, Negreiros, Marcos
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.03.2025
Témata:
ISSN:0969-6016, 1475-3995
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work, new mixed integer nonlinear optimization models are proposed for two clustering problems: the unitary weighted Weber problem and the minimum sum of squares clustering. The proposed formulations are convex quadratic models with linear and second‐order cone constraints that can be efficiently solved by interior point algorithms. Their continuous relaxation is convex and differentiable. The numerical experiments show the proposed models are more efficient than some classical models for these problems known in the literature.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0969-6016
1475-3995
DOI:10.1111/itor.13472