Second‐order cone programming models for the unitary weighted Weber problem and for the minimum sum of the squares clustering problem
In this work, new mixed integer nonlinear optimization models are proposed for two clustering problems: the unitary weighted Weber problem and the minimum sum of squares clustering. The proposed formulations are convex quadratic models with linear and second‐order cone constraints that can be effici...
Uloženo v:
| Vydáno v: | International transactions in operational research Ročník 32; číslo 2; s. 961 - 972 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Blackwell Publishing Ltd
01.03.2025
|
| Témata: | |
| ISSN: | 0969-6016, 1475-3995 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this work, new mixed integer nonlinear optimization models are proposed for two clustering problems: the unitary weighted Weber problem and the minimum sum of squares clustering. The proposed formulations are convex quadratic models with linear and second‐order cone constraints that can be efficiently solved by interior point algorithms. Their continuous relaxation is convex and differentiable. The numerical experiments show the proposed models are more efficient than some classical models for these problems known in the literature. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0969-6016 1475-3995 |
| DOI: | 10.1111/itor.13472 |