Single‐Stage Optimized Microwave‐Induced Activated Carbon from Coconut Shell for Cadmium Adsorption

The toxicity of heavy metals motivated the synthesis of coconut shell‐based activated carbon (CSAC) through single‐stage microwave irradiation technique to scavenge cadmium ions (Cd(II)). Response surface methodology revealed the optimum radiation power and radiation time which translated into 85.45...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Chemical engineering & technology Ročník 45; číslo 11; s. 1943 - 1951
Hlavní autori: Yusop, Mohamad Firdaus Mohamad, Mohd Johan Jaya, Erniza, Mohd Din, Azam Taufik, Bello, Olugbenga Solomon, Ahmad, Mohd Azmier
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Frankfurt Wiley Subscription Services, Inc 01.11.2022
Predmet:
ISSN:0930-7516, 1521-4125
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The toxicity of heavy metals motivated the synthesis of coconut shell‐based activated carbon (CSAC) through single‐stage microwave irradiation technique to scavenge cadmium ions (Cd(II)). Response surface methodology revealed the optimum radiation power and radiation time which translated into 85.45 % of Cd(II) removal and 41.78 % of CSAC's yield. Isotherm and kinetic data were best described by Freundlich and pseudo‐first‐order (PFO) models, respectively. The changes of enthalpy, entropy, and activation energy were determined as well as the reduction of CSAC yield and Cd(II) removal after six regeneration cycles. Conversion of coconut shell into activated carbon (AC) to remove Cd(II) ions from wastewater was successfully optimized by using response surface methodology with radiation power and radiation time as variables. The optimized coconut shell‐based AC (CSAC) was verified in terms of isotherm and kinetic behavior. Regeneration study showed that CSAC can withstand the regeneration cycles multiple times.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0930-7516
1521-4125
DOI:10.1002/ceat.202200051