Water‐Repellent Ionic Liquid Skinny Gels Customized for Aqueous Zn‐Ion Battery Anodes
Despite the enormous potential of aqueous zinc (Zn)‐ion batteries as a cost‐competitive and safer power source, their practical applications have been plagued by the chemical/electrochemical instability of Zn anodes with aqueous electrolytes. Here, ionic liquid (IL) skinny gels are reported as a new...
Gespeichert in:
| Veröffentlicht in: | Advanced functional materials Jg. 31; H. 36 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc
01.09.2021
|
| Schlagworte: | |
| ISSN: | 1616-301X, 1616-3028 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Despite the enormous potential of aqueous zinc (Zn)‐ion batteries as a cost‐competitive and safer power source, their practical applications have been plagued by the chemical/electrochemical instability of Zn anodes with aqueous electrolytes. Here, ionic liquid (IL) skinny gels are reported as a new class of water‐repellent ion‐conducting protective layers customized for Zn anodes. The IL skinny gel (thickness ≈500 nm), consisting of hydrophobic IL solvent, Zn salts, and thiol‐ene polymer compliant skeleton, prevents the access of water molecules to Zn anodes while allowing Zn2+ conduction for redox reactions. The IL‐gel‐skinned Zn anode enables sustainable Zn plating/stripping cyclability under 90% depth of discharge (DODZn) without suffering from water‐triggered interfacial parasitic reactions. Driven by these advantageous effects, a Zn‐ion full cell (IL‐gel‐skinned Zn‐anode||aqueous‐electrolyte‐containing MnO2 cathode) exhibits high charge/discharge cycling performance (capacity retention ≈95.7% after 600 cycles) that lies beyond those achievable with conventional aqueous Zn‐ion battery technologies.
Ionic liquid (IL) skinny gels are presented as a water‐repellent ion‐conducting protective layer customized for aqueous Zn‐ion battery anodes. The IL‐gel‐skinned Zn anode allows sustainable Zn plating/stripping behavior without water‐triggered interfacial parasitic reactions, thus enabling an aqueous Zn/MnO2 full cell to exhibit a high charge/discharge cycling performance (capacity retention ≈95.7% after 600 cycles). |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1616-301X 1616-3028 |
| DOI: | 10.1002/adfm.202103850 |