A Lagrangian relaxation approach for stochastic network capacity expansion with budget constraints
In this paper, we consider capacity expansion for network models subject to uncertainty and budget constraints. We use a scenario tree approach to handle the uncertainty and construct a multi-stage stochastic mixed-integer programming model for the network capacity expansion problem. We assume that...
Uložené v:
| Vydané v: | Annals of operations research Ročník 284; číslo 2; s. 605 - 621 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.01.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0254-5330, 1572-9338 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we consider capacity expansion for network models subject to uncertainty and budget constraints. We use a scenario tree approach to handle the uncertainty and construct a multi-stage stochastic mixed-integer programming model for the network capacity expansion problem. We assume that permanent capacity and spot market capacity are available, which can be used permanently or temporarily by the decision maker respectively. By relaxing the budget constraints, we propose a heuristic Lagrangian relaxation method to solve the problem. Two algorithms are developed to find tight upper bounds for the Lagrangian relaxation procedure. The experimental results show superior performance of the proposed Lagrangian relaxation method compared with CPLEX. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0254-5330 1572-9338 |
| DOI: | 10.1007/s10479-018-2862-7 |