Solution of Ill-Posed Nonconvex Optimization Problems with Accuracy Proportional to the Error in Input Data

The ill-posed problem of minimizing an approximately specified smooth nonconvex functional on a convex closed subset of a Hilbert space is considered. For the class of problems characterized by a feasible set with a nonempty interior and a smooth boundary, regularizing procedures are constructed tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics Jg. 58; H. 11; S. 1748 - 1760
1. Verfasser: Kokurin, M. Yu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.11.2018
Springer Nature B.V
Schlagworte:
ISSN:0965-5425, 1555-6662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ill-posed problem of minimizing an approximately specified smooth nonconvex functional on a convex closed subset of a Hilbert space is considered. For the class of problems characterized by a feasible set with a nonempty interior and a smooth boundary, regularizing procedures are constructed that ensure an accuracy estimate proportional or close to the error in the input data. The procedures are generated by the classical Tikhonov scheme and a gradient projection technique. A necessary condition for the existence of procedures regularizing the class of optimization problems with a uniform accuracy estimate in the class is established.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542518110064