Solution of Ill-Posed Nonconvex Optimization Problems with Accuracy Proportional to the Error in Input Data
The ill-posed problem of minimizing an approximately specified smooth nonconvex functional on a convex closed subset of a Hilbert space is considered. For the class of problems characterized by a feasible set with a nonempty interior and a smooth boundary, regularizing procedures are constructed tha...
Gespeichert in:
| Veröffentlicht in: | Computational mathematics and mathematical physics Jg. 58; H. 11; S. 1748 - 1760 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Moscow
Pleiades Publishing
01.11.2018
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0965-5425, 1555-6662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The ill-posed problem of minimizing an approximately specified smooth nonconvex functional on a convex closed subset of a Hilbert space is considered. For the class of problems characterized by a feasible set with a nonempty interior and a smooth boundary, regularizing procedures are constructed that ensure an accuracy estimate proportional or close to the error in the input data. The procedures are generated by the classical Tikhonov scheme and a gradient projection technique. A necessary condition for the existence of procedures regularizing the class of optimization problems with a uniform accuracy estimate in the class is established. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0965-5425 1555-6662 |
| DOI: | 10.1134/S0965542518110064 |