Enhancing Semidefinite Relaxation for Quadratically Constrained Quadratic Programming via Penalty Methods
Quadratically constrained quadratic programming arises from a broad range of applications and is known to be among the hardest optimization problems. In recent years, semidefinite relaxation has become a popular approach for quadratically constrained quadratic programming, and many results have been...
Uložené v:
| Vydané v: | Journal of optimization theory and applications Ročník 180; číslo 3; s. 964 - 992 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.03.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!