Enhancing Semidefinite Relaxation for Quadratically Constrained Quadratic Programming via Penalty Methods

Quadratically constrained quadratic programming arises from a broad range of applications and is known to be among the hardest optimization problems. In recent years, semidefinite relaxation has become a popular approach for quadratically constrained quadratic programming, and many results have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 180; H. 3; S. 964 - 992
Hauptverfasser: Luo, Hezhi, Bai, Xiaodi, Peng, Jiming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.03.2019
Springer Nature B.V
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!