A Regularized Semi-Smooth Newton Method with Projection Steps for Composite Convex Programs
The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: (1) Many well-known operator splitting methods, such as forward–backward splitting and Douglas–Rachford splitting, actually defin...
Uloženo v:
| Vydáno v: | Journal of scientific computing Ročník 76; číslo 1; s. 364 - 389 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-7474, 1573-7691 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: (1) Many well-known operator splitting methods, such as forward–backward splitting and Douglas–Rachford splitting, actually define a fixed-point mapping; (2) The optimal solutions of the composite convex program and the solutions of a system of nonlinear equations derived from the fixed-point mapping are equivalent. Solving this kind of system of nonlinear equations enables us to develop second-order type methods. These nonlinear equations may be non-differentiable, but they are often semi-smooth and their generalized Jacobian matrix is positive semidefinite due to monotonicity. By combining with a regularization approach and a known hyperplane projection technique, we propose an adaptive semi-smooth Newton method and establish its convergence to global optimality. Preliminary numerical results on
ℓ
1
-minimization problems demonstrate that our second-order type algorithms are able to achieve superlinear or quadratic convergence. |
|---|---|
| AbstractList | The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: (1) Many well-known operator splitting methods, such as forward–backward splitting and Douglas–Rachford splitting, actually define a fixed-point mapping; (2) The optimal solutions of the composite convex program and the solutions of a system of nonlinear equations derived from the fixed-point mapping are equivalent. Solving this kind of system of nonlinear equations enables us to develop second-order type methods. These nonlinear equations may be non-differentiable, but they are often semi-smooth and their generalized Jacobian matrix is positive semidefinite due to monotonicity. By combining with a regularization approach and a known hyperplane projection technique, we propose an adaptive semi-smooth Newton method and establish its convergence to global optimality. Preliminary numerical results on ℓ1-minimization problems demonstrate that our second-order type algorithms are able to achieve superlinear or quadratic convergence. The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: (1) Many well-known operator splitting methods, such as forward–backward splitting and Douglas–Rachford splitting, actually define a fixed-point mapping; (2) The optimal solutions of the composite convex program and the solutions of a system of nonlinear equations derived from the fixed-point mapping are equivalent. Solving this kind of system of nonlinear equations enables us to develop second-order type methods. These nonlinear equations may be non-differentiable, but they are often semi-smooth and their generalized Jacobian matrix is positive semidefinite due to monotonicity. By combining with a regularization approach and a known hyperplane projection technique, we propose an adaptive semi-smooth Newton method and establish its convergence to global optimality. Preliminary numerical results on ℓ 1 -minimization problems demonstrate that our second-order type algorithms are able to achieve superlinear or quadratic convergence. |
| Author | Zhang, Liwei Xiao, Xiantao Wen, Zaiwen Li, Yongfeng |
| Author_xml | – sequence: 1 givenname: Xiantao surname: Xiao fullname: Xiao, Xiantao organization: School of Mathematical Sciences, Dalian University of Technology – sequence: 2 givenname: Yongfeng surname: Li fullname: Li, Yongfeng organization: School of Mathematical Sciences, Peking University – sequence: 3 givenname: Zaiwen orcidid: 0000-0003-1762-0671 surname: Wen fullname: Wen, Zaiwen email: wenzw@pku.edu.cn organization: Beijing International Center for Mathematical Research, Peking University – sequence: 4 givenname: Liwei surname: Zhang fullname: Zhang, Liwei organization: School of Mathematical Sciences, Dalian University of Technology |
| BookMark | eNp9kEtLAzEUhYNUsFZ_gLsB19FkMplMlqX4gvrA6spFSDN32imdSU1Sq_56M4wgCLo6l8v57uMcokFrW0DohJIzSog495RIyjGhApM8zTDbQ0PKBcMil3SAhqQoOBaZyA7QofcrQogsZDpEL-PkERbbtXb1J5TJDJoazxprwzK5g12wbXILYWnLZFfH1oOzKzChju1ZgI1PKuuSiW021tcBYtW-wXvnWjjd-CO0X-m1h-NvHaHny4unyTWe3l_dTMZTbBjNA64ML7iGSmhBgIOmpiKGZJBqJtM0nxMhjYE5K42UOU1lBlGKkmWEap7nmo3QaT934-zrFnxQK7t1bVypUkkLRpngPLpE7zLOeu-gUqYOuvslOF2vFSWqS1L1SaqYpOqSVCyS9Be5cXWj3ce_TNozPnrbBbifm_6GvgC29ofh |
| CitedBy_id | crossref_primary_10_1137_18M1181249 crossref_primary_10_1137_19M1259444 crossref_primary_10_1007_s10915_020_01364_0 crossref_primary_10_1007_s10915_023_02165_x crossref_primary_10_1016_j_cam_2022_114765 crossref_primary_10_1002_nla_2409 crossref_primary_10_1007_s10915_025_02794_4 crossref_primary_10_1016_j_acha_2019_08_005 crossref_primary_10_1007_s10107_022_01794_8 crossref_primary_10_1007_s11228_022_00651_2 crossref_primary_10_1137_23M1565097 crossref_primary_10_1007_s12190_024_02062_y crossref_primary_10_1137_24M1628578 crossref_primary_10_1109_TPAMI_2022_3215914 crossref_primary_10_1137_20M1321176 crossref_primary_10_12677_AAM_2022_113119 crossref_primary_10_1137_19M1290097 crossref_primary_10_1007_s10107_021_01629_y crossref_primary_10_1016_j_apnum_2023_07_004 crossref_primary_10_1007_s10915_019_00929_y crossref_primary_10_1287_ijoo_2021_0064 crossref_primary_10_1007_s40305_020_00295_9 crossref_primary_10_1007_s43069_024_00307_x crossref_primary_10_1007_s10107_022_01898_1 crossref_primary_10_1016_j_cnsns_2025_109251 crossref_primary_10_1016_j_jksus_2024_103547 crossref_primary_10_1007_s10107_024_02110_2 crossref_primary_10_1287_moor_2022_1302 crossref_primary_10_1007_s42967_024_00423_9 crossref_primary_10_1007_s10589_023_00525_9 crossref_primary_10_1007_s11425_020_1865_1 crossref_primary_10_1002_nla_2533 crossref_primary_10_1137_18M122457X crossref_primary_10_1016_j_dsp_2021_103320 crossref_primary_10_1137_21M1398513 crossref_primary_10_1007_s10589_023_00481_4 crossref_primary_10_1016_j_cam_2022_114674 crossref_primary_10_1088_1361_6420_adc0b7 crossref_primary_10_1007_s11081_020_09523_w crossref_primary_10_1287_ijoo_2019_0032 crossref_primary_10_1007_s10589_023_00451_w crossref_primary_10_1007_s10589_024_00595_3 crossref_primary_10_1137_20M1335480 crossref_primary_10_1007_s40305_025_00584_1 crossref_primary_10_1080_02331934_2021_1958809 crossref_primary_10_1007_s10915_025_02867_4 crossref_primary_10_1287_moor_2023_0068 crossref_primary_10_1007_s10915_025_02806_3 |
| Cites_doi | 10.1137/S1052623499357957 10.1007/978-1-4419-9569-8_10 10.1007/s10107-014-0853-2 10.1007/978-1-4757-6388-1_18 10.1137/090777761 10.1137/080718206 10.1007/BF01581204 10.1007/978-3-319-41589-5_4 10.1137/120892167 10.1007/978-1-4419-9467-7 10.1016/0898-1221(76)90003-1 10.1093/imanum/drq015 10.1287/moor.2016.0827 10.1137/0803021 10.1137/S1052623494274970 10.1137/090747695 10.1007/978-1-4614-4340-7 10.1007/s00607-004-0083-1 10.1287/moor.18.1.227 10.1287/moor.27.1.150.342 10.1090/S0002-9947-1956-0084194-4 10.1088/0266-5611/24/3/035007 10.1006/jmaa.1995.1412 10.1007/BF01581275 10.1090/S0025-5718-08-02121-2 10.1007/BF02190320 10.1007/s11075-012-9653-z 10.1007/s10107-015-0965-3 10.1016/S0377-0427(02)00730-6 10.1561/2200000016 10.1137/130921428 10.1137/0716071 10.1137/080714488 10.1007/s10957-004-1721-7 10.1137/0315061 10.1109/TSP.2009.2016892 10.1007/s10107-007-0170-0 10.1007/978-3-642-02431-3 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2017 Springer Science+Business Media, LLC, part of Springer Nature 2017. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2017 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2017. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s10915-017-0624-3 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (subscription) Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| EndPage | 389 |
| ExternalDocumentID | 10_1007_s10915_017_0624_3 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11322109 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c316t-fc585aef7a70e5ea1cf0c04e2a39226b079cceb3dc9961294e9618d3401a566a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434711800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Wed Nov 05 04:24:42 EST 2025 Sat Nov 29 01:56:18 EST 2025 Tue Nov 18 22:27:57 EST 2025 Fri Feb 21 02:36:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Semi-smoothness Operator splitting methods 90C30 65K05 Proximal mapping Newton method Composite convex programs |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-fc585aef7a70e5ea1cf0c04e2a39226b079cceb3dc9961294e9618d3401a566a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1762-0671 |
| PQID | 2918313755 |
| PQPubID | 2043771 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2918313755 crossref_citationtrail_10_1007_s10915_017_0624_3 crossref_primary_10_1007_s10915_017_0624_3 springer_journals_10_1007_s10915_017_0624_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20180700 2018-7-00 20180701 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 7 year: 2018 text: 20180700 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2018 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Glowinski, Marrocco (CR15) 1975; 9 Mifflin (CR21) 1977; 15 Sun, Han (CR34) 1997; 7 Wright, Nowak, Figueiredo (CR40) 2009; 57 Facchinei, Pang (CR12) 2003 Ortega, Rheinboldt (CR24) 1970 De Luca, Facchinei, Kanzow (CR9) 1996; 75 Pang, Qi (CR25) 1993; 3 Sun, Sun (CR35) 2002; 27 Yang, Zhang (CR42) 2011; 33 Byrd, Chin, Nocedal, Oztoprak (CR4) 2016; 159 Wen, Yin, Goldfarb, Zhang (CR39) 2010; 32 Ahookhosh, Amini, Bahrami (CR1) 2013; 64 Zhao, Sun, Toh (CR43) 2010; 20 Solodov, Svaiter, Fukushima, Qi (CR32) 1999 Rockafellar, Wets (CR29) 1998 Tseng, Yun (CR36) 2009; 117 Gabay, Mercier (CR14) 1976; 2 Zhou, Li (CR46) 2008; 77 Combettes, Pesquet, Bauschke, Burachik, Combettes, Elser, Luke, Wolkowicz (CR6) 2011 Bauschke, Combettes (CR2) 2011 Griesse, Lorenz (CR16) 2008; 24 van den Berg, Friedlander (CR38) 2008; 31 Douglas, Rachford (CR10) 1956; 82 Eckstein, Bertsekas (CR11) 1992; 55 Ulbrich (CR37) 2011 Xiu, Zhang (CR41) 2003; 152 Chen, Liu, Sun, Toh (CR5) 2016; 155 Shapiro (CR31) 1994; 81 Qi, Sun (CR28) 1993; 58 CR26 Lee, Sun, Saunders (CR18) 2014; 24 Nocedal, Wright (CR23) 2006 Jiang, Qi (CR17) 1995; 196 Milzarek, Ulbrich (CR22) 2014; 24 Scholtes (CR30) 2012 Zhou, Toh (CR45) 2005; 125 Davis, Yin (CR8) 2017; 42 Qi (CR27) 1993; 18 Lions, Mercier (CR20) 1979; 16 Zhao, Li (CR44) 2001; 11 Davis, Yin, Glowinski, Osher, Yin (CR7) 2016 Li, Li (CR19) 2011; 31 Boyd, Parikh, Chu, Peleato, Eckstein (CR3) 2011; 3 Fan, Yuan (CR13) 2005; 74 Solodov, Svaiter (CR33) 1999; 6 WJ Zhou (624_CR46) 2008; 77 JY Fan (624_CR13) 2005; 74 R Glowinski (624_CR15) 1975; 9 H Jiang (624_CR17) 1995; 196 F Facchinei (624_CR12) 2003 MV Solodov (624_CR33) 1999; 6 S Scholtes (624_CR30) 2012 LQ Qi (624_CR28) 1993; 58 Z Wen (624_CR39) 2010; 32 N Xiu (624_CR41) 2003; 152 E Berg van den (624_CR38) 2008; 31 PL Combettes (624_CR6) 2011 D Gabay (624_CR14) 1976; 2 JD Lee (624_CR18) 2014; 24 A Shapiro (624_CR31) 1994; 81 M Ahookhosh (624_CR1) 2013; 64 RH Byrd (624_CR4) 2016; 159 624_CR26 T Luca De (624_CR9) 1996; 75 MV Solodov (624_CR32) 1999 P Tseng (624_CR36) 2009; 117 J Yang (624_CR42) 2011; 33 R Griesse (624_CR16) 2008; 24 P-L Lions (624_CR20) 1979; 16 M Ulbrich (624_CR37) 2011 C Chen (624_CR5) 2016; 155 Q Li (624_CR19) 2011; 31 Y-B Zhao (624_CR44) 2001; 11 J Eckstein (624_CR11) 1992; 55 JM Ortega (624_CR24) 1970 D Sun (624_CR34) 1997; 7 RT Rockafellar (624_CR29) 1998 SJ Wright (624_CR40) 2009; 57 G Zhou (624_CR45) 2005; 125 S Boyd (624_CR3) 2011; 3 HH Bauschke (624_CR2) 2011 R Mifflin (624_CR21) 1977; 15 A Milzarek (624_CR22) 2014; 24 XY Zhao (624_CR43) 2010; 20 D Davis (624_CR8) 2017; 42 J Douglas (624_CR10) 1956; 82 J Nocedal (624_CR23) 2006 D Sun (624_CR35) 2002; 27 J-S Pang (624_CR25) 1993; 3 D Davis (624_CR7) 2016 LQ Qi (624_CR27) 1993; 18 |
| References_xml | – volume: 9 start-page: 41 year: 1975 end-page: 76 ident: CR15 article-title: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires publication-title: Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. – volume: 11 start-page: 962 year: 2001 end-page: 973 ident: CR44 article-title: Monotonicity of fixed point and normal mappings associated with variational inequality and its application publication-title: SIAM J. Optim. doi: 10.1137/S1052623499357957 – start-page: 185 year: 2011 end-page: 212 ident: CR6 article-title: Proximal splitting methods in signal processing publication-title: Fixed-Point Algorithms for Inverse Poblems in Science and Engineering, Volume 49 of Springer Optim. Appl. doi: 10.1007/978-1-4419-9569-8_10 – volume: 155 start-page: 435 year: 2016 end-page: 470 ident: CR5 article-title: A semismooth Newton-CG based dual PPA for matrix spectral norm approximation problems publication-title: Math. Program. doi: 10.1007/s10107-014-0853-2 – start-page: 355 year: 1999 end-page: 369 ident: CR32 article-title: A globally convergent inexact Newton method for systems of monotone equations publication-title: Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods (Lausanne, 1997) doi: 10.1007/978-1-4757-6388-1_18 – volume: 6 start-page: 59 year: 1999 end-page: 70 ident: CR33 article-title: A hybrid projection-proximal point algorithm publication-title: J. Convex Anal. – volume: 33 start-page: 250 year: 2011 end-page: 278 ident: CR42 article-title: Alternating direction algorithms for -problems in compressive sensing publication-title: SIAM J. Sci. Comput. doi: 10.1137/090777761 – volume: 20 start-page: 1737 year: 2010 end-page: 1765 ident: CR43 article-title: A Newton-CG augmented Lagrangian method for semidefinite programming publication-title: SIAM J. Optim. doi: 10.1137/080718206 – volume: 55 start-page: 293 year: 1992 end-page: 318 ident: CR11 article-title: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators publication-title: Math. Program. doi: 10.1007/BF01581204 – start-page: 115 year: 2016 end-page: 163 ident: CR7 article-title: Convergence rate analysis of several splitting schemes publication-title: Splitting Methods in Communication, Imaging, Science, and Engineering, Sci. Comput. doi: 10.1007/978-3-319-41589-5_4 – volume: 24 start-page: 298 year: 2014 end-page: 333 ident: CR22 article-title: A semismooth Newton method with multidimensional filter globalization for -optimization publication-title: SIAM J. Optim. doi: 10.1137/120892167 – year: 2011 ident: CR2 publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces doi: 10.1007/978-1-4419-9467-7 – volume: 2 start-page: 17 year: 1976 end-page: 40 ident: CR14 article-title: A dual algorithm for the solution of nonlinear variational problems via finite element approximation publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(76)90003-1 – volume: 31 start-page: 1625 year: 2011 end-page: 1635 ident: CR19 article-title: A class of derivative-free methods for large-scale nonlinear monotone equations publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drq015 – volume: 42 start-page: 783 year: 2017 end-page: 805 ident: CR8 article-title: Faster convergence rates of relaxed Peaceman–Rachford and ADMM under regularity assumptions publication-title: Math. Oper. Res. doi: 10.1287/moor.2016.0827 – volume: 3 start-page: 443 year: 1993 end-page: 465 ident: CR25 article-title: Nonsmooth equations: motivation and algorithms publication-title: SIAM J. Optim. doi: 10.1137/0803021 – volume: 7 start-page: 463 year: 1997 end-page: 480 ident: CR34 article-title: Newton and quasi-Newton methods for a class of nonsmooth equations and related problems publication-title: SIAM J. Optim. doi: 10.1137/S1052623494274970 – volume: 32 start-page: 1832 year: 2010 end-page: 1857 ident: CR39 article-title: A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation publication-title: SIAM J. Sci. Comput. doi: 10.1137/090747695 – year: 2012 ident: CR30 publication-title: Introduction to Piecewise Differentiable Equations, Springer Briefs in Optimization doi: 10.1007/978-1-4614-4340-7 – volume: 74 start-page: 23 year: 2005 end-page: 39 ident: CR13 article-title: On the quadratic convergence of the Levenberg–Marquardt method without nonsingularity assumption publication-title: Computing doi: 10.1007/s00607-004-0083-1 – volume: 18 start-page: 227 year: 1993 end-page: 244 ident: CR27 article-title: Convergence analysis of some algorithms for solving nonsmooth equations publication-title: Math. Oper. Res. doi: 10.1287/moor.18.1.227 – volume: 27 start-page: 150 year: 2002 end-page: 169 ident: CR35 article-title: Semismooth matrix-valued functions publication-title: Math. Oper. Res. doi: 10.1287/moor.27.1.150.342 – year: 2006 ident: CR23 publication-title: Numerical Optimization, Springer Series in Operations Research and Financial Engineering – volume: 82 start-page: 421 year: 1956 end-page: 439 ident: CR10 article-title: On the numerical solution of heat conduction problems in two and three space variables publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1956-0084194-4 – volume: 24 start-page: 035007 year: 2008 ident: CR16 article-title: A semismooth Newton method for Tikhonov functionals with sparsity constraints publication-title: Inverse Probl. doi: 10.1088/0266-5611/24/3/035007 – volume: 196 start-page: 314 year: 1995 end-page: 331 ident: CR17 article-title: Local uniqueness and convergence of iterative methods for nonsmooth variational inequalities publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1995.1412 – volume: 58 start-page: 353 year: 1993 end-page: 367 ident: CR28 article-title: A nonsmooth version of Newton’s method publication-title: Math. Program. doi: 10.1007/BF01581275 – volume: 77 start-page: 2231 year: 2008 end-page: 2240 ident: CR46 article-title: A globally convergent BFGS method for nonlinear monotone equations without any merit functions publication-title: Math. Comput. doi: 10.1090/S0025-5718-08-02121-2 – volume: 81 start-page: 203 year: 1994 end-page: 204 ident: CR31 article-title: Directionally nondifferentiable metric projection publication-title: J. Optim. Theory Appl. doi: 10.1007/BF02190320 – volume: 64 start-page: 21 year: 2013 end-page: 42 ident: CR1 article-title: Two derivative-free projection approaches for systems of large-scale nonlinear monotone equations publication-title: Numer. Algorithms doi: 10.1007/s11075-012-9653-z – volume: 159 start-page: 435 year: 2016 end-page: 467 ident: CR4 article-title: A family of second-order methods for convex -regularized optimization publication-title: Math. Program. doi: 10.1007/s10107-015-0965-3 – volume: 152 start-page: 559 year: 2003 end-page: 585 ident: CR41 article-title: Some recent advances in projection-type methods for variational inequalities publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(02)00730-6 – volume: 3 start-page: 1 year: 2011 end-page: 122 ident: CR3 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 – volume: 24 start-page: 1420 year: 2014 end-page: 1443 ident: CR18 article-title: Proximal Newton-type methods for minimizing composite functions publication-title: SIAM J. Optim. doi: 10.1137/130921428 – volume: 16 start-page: 964 year: 1979 end-page: 979 ident: CR20 article-title: Splitting algorithms for the sum of two nonlinear operators publication-title: SIAM J. Numer. Anal. doi: 10.1137/0716071 – year: 2011 ident: CR37 publication-title: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function spaces, Society for Industrial and Applied Mathematics SIAM), Philadelphia, PA – volume: 31 start-page: 890 year: 2008 end-page: 912 ident: CR38 article-title: Probing the Pareto frontier for basis pursuit solutions publication-title: SIAM J. Sci. Comput. doi: 10.1137/080714488 – volume: 125 start-page: 205 year: 2005 end-page: 221 ident: CR45 article-title: Superlinear convergence of a Newton-type algorithm for monotone equations publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-004-1721-7 – volume: 15 start-page: 959 year: 1977 end-page: 972 ident: CR21 article-title: Semismooth and semiconvex functions in constrained optimization publication-title: SIAM J. Control Optim. doi: 10.1137/0315061 – volume: 57 start-page: 2479 year: 2009 end-page: 2493 ident: CR40 article-title: Sparse reconstruction by separable approximation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2016892 – volume: 75 start-page: 407 year: 1996 end-page: 439 ident: CR9 article-title: A semismooth equation approach to the solution of nonlinear complementarity problems publication-title: Math. Program. – year: 2003 ident: CR12 publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems – volume: 117 start-page: 387 year: 2009 end-page: 423 ident: CR36 article-title: A coordinate gradient descent method for nonsmooth separable minimization publication-title: Math. Program. doi: 10.1007/s10107-007-0170-0 – ident: CR26 – year: 1970 ident: CR24 publication-title: Iterative Solution of Nonlinear Equations in Several Variables – year: 1998 ident: CR29 publication-title: Variational Analysis doi: 10.1007/978-3-642-02431-3 – volume-title: Numerical Optimization, Springer Series in Operations Research and Financial Engineering year: 2006 ident: 624_CR23 – volume-title: Introduction to Piecewise Differentiable Equations, Springer Briefs in Optimization year: 2012 ident: 624_CR30 doi: 10.1007/978-1-4614-4340-7 – volume: 31 start-page: 890 year: 2008 ident: 624_CR38 publication-title: SIAM J. Sci. Comput. doi: 10.1137/080714488 – volume: 6 start-page: 59 year: 1999 ident: 624_CR33 publication-title: J. Convex Anal. – start-page: 185 volume-title: Fixed-Point Algorithms for Inverse Poblems in Science and Engineering, Volume 49 of Springer Optim. Appl. year: 2011 ident: 624_CR6 doi: 10.1007/978-1-4419-9569-8_10 – volume: 3 start-page: 1 year: 2011 ident: 624_CR3 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 – volume: 32 start-page: 1832 year: 2010 ident: 624_CR39 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090747695 – volume: 125 start-page: 205 year: 2005 ident: 624_CR45 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-004-1721-7 – volume: 2 start-page: 17 year: 1976 ident: 624_CR14 publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(76)90003-1 – ident: 624_CR26 – volume: 9 start-page: 41 year: 1975 ident: 624_CR15 publication-title: Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. – volume: 196 start-page: 314 year: 1995 ident: 624_CR17 publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1995.1412 – volume: 11 start-page: 962 year: 2001 ident: 624_CR44 publication-title: SIAM J. Optim. doi: 10.1137/S1052623499357957 – volume-title: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function spaces, Society for Industrial and Applied Mathematics SIAM), Philadelphia, PA year: 2011 ident: 624_CR37 – volume: 16 start-page: 964 year: 1979 ident: 624_CR20 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0716071 – volume: 81 start-page: 203 year: 1994 ident: 624_CR31 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF02190320 – volume: 75 start-page: 407 year: 1996 ident: 624_CR9 publication-title: Math. Program. – volume: 77 start-page: 2231 year: 2008 ident: 624_CR46 publication-title: Math. Comput. doi: 10.1090/S0025-5718-08-02121-2 – volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces year: 2011 ident: 624_CR2 doi: 10.1007/978-1-4419-9467-7 – volume: 57 start-page: 2479 year: 2009 ident: 624_CR40 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2016892 – volume: 74 start-page: 23 year: 2005 ident: 624_CR13 publication-title: Computing doi: 10.1007/s00607-004-0083-1 – volume: 159 start-page: 435 year: 2016 ident: 624_CR4 publication-title: Math. Program. doi: 10.1007/s10107-015-0965-3 – volume: 20 start-page: 1737 year: 2010 ident: 624_CR43 publication-title: SIAM J. Optim. doi: 10.1137/080718206 – volume: 58 start-page: 353 year: 1993 ident: 624_CR28 publication-title: Math. Program. doi: 10.1007/BF01581275 – volume: 27 start-page: 150 year: 2002 ident: 624_CR35 publication-title: Math. Oper. Res. doi: 10.1287/moor.27.1.150.342 – volume: 117 start-page: 387 year: 2009 ident: 624_CR36 publication-title: Math. Program. doi: 10.1007/s10107-007-0170-0 – volume: 24 start-page: 1420 year: 2014 ident: 624_CR18 publication-title: SIAM J. Optim. doi: 10.1137/130921428 – volume: 42 start-page: 783 year: 2017 ident: 624_CR8 publication-title: Math. Oper. Res. doi: 10.1287/moor.2016.0827 – volume: 55 start-page: 293 year: 1992 ident: 624_CR11 publication-title: Math. Program. doi: 10.1007/BF01581204 – volume: 18 start-page: 227 year: 1993 ident: 624_CR27 publication-title: Math. Oper. Res. doi: 10.1287/moor.18.1.227 – volume: 152 start-page: 559 year: 2003 ident: 624_CR41 publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(02)00730-6 – volume: 64 start-page: 21 year: 2013 ident: 624_CR1 publication-title: Numer. Algorithms doi: 10.1007/s11075-012-9653-z – volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems year: 2003 ident: 624_CR12 – volume: 155 start-page: 435 year: 2016 ident: 624_CR5 publication-title: Math. Program. doi: 10.1007/s10107-014-0853-2 – volume-title: Iterative Solution of Nonlinear Equations in Several Variables year: 1970 ident: 624_CR24 – volume: 24 start-page: 298 year: 2014 ident: 624_CR22 publication-title: SIAM J. Optim. doi: 10.1137/120892167 – volume-title: Variational Analysis year: 1998 ident: 624_CR29 doi: 10.1007/978-3-642-02431-3 – volume: 15 start-page: 959 year: 1977 ident: 624_CR21 publication-title: SIAM J. Control Optim. doi: 10.1137/0315061 – volume: 33 start-page: 250 year: 2011 ident: 624_CR42 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090777761 – start-page: 115 volume-title: Splitting Methods in Communication, Imaging, Science, and Engineering, Sci. Comput. year: 2016 ident: 624_CR7 doi: 10.1007/978-3-319-41589-5_4 – volume: 82 start-page: 421 year: 1956 ident: 624_CR10 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1956-0084194-4 – volume: 24 start-page: 035007 year: 2008 ident: 624_CR16 publication-title: Inverse Probl. doi: 10.1088/0266-5611/24/3/035007 – volume: 31 start-page: 1625 year: 2011 ident: 624_CR19 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drq015 – start-page: 355 volume-title: Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods (Lausanne, 1997) year: 1999 ident: 624_CR32 – volume: 7 start-page: 463 year: 1997 ident: 624_CR34 publication-title: SIAM J. Optim. doi: 10.1137/S1052623494274970 – volume: 3 start-page: 443 year: 1993 ident: 624_CR25 publication-title: SIAM J. Optim. doi: 10.1137/0803021 |
| SSID | ssj0009892 |
| Score | 2.4683065 |
| Snippet | The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 364 |
| SubjectTerms | Algorithms Computational Mathematics and Numerical Analysis Convergence Convex analysis Hyperplanes Jacobi matrix method Jacobian matrix Machine learning Mapping Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Methods Newton methods Nonlinear equations Optimization Partial differential equations Regularization Splitting Theoretical |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF20evCi1g-sVtmDBz9YTLJJNjlJEYsHLcUqFD2E7WYDhTatTS3ir3cm2RgU7MVbINkl5M3MvtmdzCPkNAnAacBOWAJrH3O1EmyQeC6zpKW9ALW3k7yJ673odIJ-P-yaDbfMlFWWMTEP1PFE4R75lROC8dlceN719I2hahSerhoJjVWyhl0SULqh671UTXeDXBQZHMljQJvd8lSz-HUutLFsDYu_HJfxn-tSRTZ_nY_my057678vvE02DeGkrcJC6mRFpzukblw6o2em7_T5Lnlt0cdcmX42_NQx7enxkPXGE4CSQigEjkgfcrlpinu3tFts4QCsFCvFMgrsl2J0wSowDVfpQn_gU1j-le2R5_bt080dM9oLTHHbn7NEQR4hdSKkANC0tFViKcvVjgRC5fgDS4RKQSIeK0iYgDO4GqVjYg7pmgSGKPk-qaWTVB8Q6nApODA1m_sa6A8fhK4SPoISAmaaN4hVfvlImcbkqI8xiqqWyghWBGBFCFYEQy6-h0yLrhzLHm6WAEXGQbOoQqdBLkuIq9t_Tna4fLIjsgGMKijqeZukNp-962OyrhbzYTY7ya3zCxaD6FU priority: 102 providerName: ProQuest |
| Title | A Regularized Semi-Smooth Newton Method with Projection Steps for Composite Convex Programs |
| URI | https://link.springer.com/article/10.1007/s10915-017-0624-3 https://www.proquest.com/docview/2918313755 |
| Volume | 76 |
| WOSCitedRecordID | wos000434711800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7691 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: P5Z dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7691 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: K7- dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: eissn: 1573-7691 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9080Ef1E3F6Rx58MEPAm3TNu3jlA1BN8qmMvShdFkKA9fJOof413vpx6qigr6UQpNQ7nJ3vySX-wEchw4aDc4TGmLso6YUnA5Dy6RaoEnLUdzbYVLE9YZ3u85g4HrZPe44z3bPjyQTT_3hspurq0Qzla5lmJStQhmjnaP4Gnr9-6LSrpMwIaP1WBSxspkfZX43xOdgVCDML4eiSaxpb_3rL7dhM4OWpJnOhQqsyKgKG51lXda4CpXMlGNyktWbPt2BxybpJYz0s_GbHJG-nIxpfzJFFRJ0gYgNSSehmSZqz5Z46dYNqpOoDLGYIOolyquo7C-Jb9FCvqpWKu0r3oW7duv28opmnAtUMN2e01Dg-iGQIQ84KksGugg1oZnSCBBIGfZQ464QuAAfCVwoIVYwpaKMGTFcpgWIDAO2B6VoGsl9IAYLOEOEpjNbIuxhQ9cU3FZ6cRFnSFYDLRe-L7KC5IoX48kvSikrYfooTF8J08cuZ8suz2k1jt8a13ON-plhxr7hog_TGbesGpznGiw-_zjYwZ9aH8I6AisnTeutQ2k-e5FHsCYW83E8a0D5otX1eg1YveYUn5710Ejm8DuKluWM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB6loVJ7aaEPlfLaQysB1aq21_baB4QiHgIlRIikUiQOxlmPUSRIaJxC2x_Fb2TGj1pUKrccerNk78r2fjPz7e63MwCf0oCMhnAiU4p90kWj5TD1XGnFFnoB195O8ySuHd3tBoNBeNqA--osDMsqK5-YO-pkYniN_KsTEvhspT1v9-a75KpRvLtaldAoYNHGX3c0Zct2jvdpfD87zuFBf-9IllUFpFG2P5OpIYYcY6pjTa-DsW1Sy1guOjFRBccfWjo0hqaYiaGpAEVDF7koSqJoIhIT94kV9fsMFlwVaLartpZ1kt8gL8JMhutJoulutYtaHNULbZbJsdjMcaV6HAdrcvvXfmwe5g5f_28_aBFelYRatAoLWIIGjt_AUumyMrFZ5tXeegvnLXGGlyy7Hf3GRPTweiR71xOCqiBXTxxYnOTltAWvTYvTYomKYCtYCZcJYveCvSer3JCuxrf4k59ieVv2Dr7N5SPfQ3M8GeMHEI6KtSImaisfid6pYega7TMIQuJTqJbBqkY6MmXida7_cRXVKaMZHBGBI2JwRNRk-0-TmyLryFMPr1aAiEoHlEU1GpbhSwWp-vY_O_v4dGcb8OKof9KJOsfd9gq8JPYYFNrlVWjOpj9wDZ6b29kom67nliHgYt5IewAHZ0Uu |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3oFNEHdVNxOjUPPvhBWNu0a_s41KG4jeFUBj6ULkth4LqxziH-eu_tx6aigvhWaBJKbj7ObU7OATgOHJw0OE54gHsfN5W0eTewTK75mrIc8t4OYhHXut1sOp2O20p9TqOM7Z4dSSZ3GkilKZyUR72g_OHim6sT6YyoW4bJxSIsmcSjp3S9_ThX3XViV2ScSRZH3Gxmx5rfNfF5Y5qjzS8HpPG-U9v49xdvwnoKOVk1GSN5WFBhAdYaM73WqAD5dIpH7CTVoT7dgqcqu4ud6sf9N9VjbTXo8_ZgiKFluDQiZmSN2H6a0b9c1kp-6WCYGTHHIoZomNFqQ6wwhU_hVL1SKaKDRdvwULu6v7jmqRcDl0KvTHggMa_wVWD7NgZR-boMNKmZyvARYBmVrma7UmJi3pOYQCGGMBVZyfQEpm8-IkZf7EAuHIZqF5ghfFsgctNFRSEcEl3XlHaFYuQi_lCiCFoWCE-mQuXkl_HszSWWqTM97EyPOtPDKmezKqNEpeO3wqUsul46YSPPcHFt04VtWUU4z6I5f_1jY3t_Kn0EK63Lmle_ad7uwypiLydh_pYgNxm_qANYltNJPxofxsP4HYQ17eo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Regularized+Semi-Smooth+Newton+Method+with+Projection+Steps+for+Composite+Convex+Programs&rft.jtitle=Journal+of+scientific+computing&rft.au=Xiao%2C+Xiantao&rft.au=Li%2C+Yongfeng&rft.au=Wen%2C+Zaiwen&rft.au=Zhang%2C+Liwei&rft.date=2018-07-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=76&rft.issue=1&rft.spage=364&rft.epage=389&rft_id=info:doi/10.1007%2Fs10915-017-0624-3&rft.externalDocID=10_1007_s10915_017_0624_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |