A Regularized Semi-Smooth Newton Method with Projection Steps for Composite Convex Programs
The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: (1) Many well-known operator splitting methods, such as forward–backward splitting and Douglas–Rachford splitting, actually defin...
Uloženo v:
| Vydáno v: | Journal of scientific computing Ročník 76; číslo 1; s. 364 - 389 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-7474, 1573-7691 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: (1) Many well-known operator splitting methods, such as forward–backward splitting and Douglas–Rachford splitting, actually define a fixed-point mapping; (2) The optimal solutions of the composite convex program and the solutions of a system of nonlinear equations derived from the fixed-point mapping are equivalent. Solving this kind of system of nonlinear equations enables us to develop second-order type methods. These nonlinear equations may be non-differentiable, but they are often semi-smooth and their generalized Jacobian matrix is positive semidefinite due to monotonicity. By combining with a regularization approach and a known hyperplane projection technique, we propose an adaptive semi-smooth Newton method and establish its convergence to global optimality. Preliminary numerical results on
ℓ
1
-minimization problems demonstrate that our second-order type algorithms are able to achieve superlinear or quadratic convergence. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7474 1573-7691 |
| DOI: | 10.1007/s10915-017-0624-3 |