A Regularized Semi-Smooth Newton Method with Projection Steps for Composite Convex Programs

The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: (1) Many well-known operator splitting methods, such as forward–backward splitting and Douglas–Rachford splitting, actually defin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 76; číslo 1; s. 364 - 389
Hlavní autoři: Xiao, Xiantao, Li, Yongfeng, Wen, Zaiwen, Zhang, Liwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2018
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: (1) Many well-known operator splitting methods, such as forward–backward splitting and Douglas–Rachford splitting, actually define a fixed-point mapping; (2) The optimal solutions of the composite convex program and the solutions of a system of nonlinear equations derived from the fixed-point mapping are equivalent. Solving this kind of system of nonlinear equations enables us to develop second-order type methods. These nonlinear equations may be non-differentiable, but they are often semi-smooth and their generalized Jacobian matrix is positive semidefinite due to monotonicity. By combining with a regularization approach and a known hyperplane projection technique, we propose an adaptive semi-smooth Newton method and establish its convergence to global optimality. Preliminary numerical results on ℓ 1 -minimization problems demonstrate that our second-order type algorithms are able to achieve superlinear or quadratic convergence.
AbstractList The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: (1) Many well-known operator splitting methods, such as forward–backward splitting and Douglas–Rachford splitting, actually define a fixed-point mapping; (2) The optimal solutions of the composite convex program and the solutions of a system of nonlinear equations derived from the fixed-point mapping are equivalent. Solving this kind of system of nonlinear equations enables us to develop second-order type methods. These nonlinear equations may be non-differentiable, but they are often semi-smooth and their generalized Jacobian matrix is positive semidefinite due to monotonicity. By combining with a regularization approach and a known hyperplane projection technique, we propose an adaptive semi-smooth Newton method and establish its convergence to global optimality. Preliminary numerical results on ℓ1-minimization problems demonstrate that our second-order type algorithms are able to achieve superlinear or quadratic convergence.
The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: (1) Many well-known operator splitting methods, such as forward–backward splitting and Douglas–Rachford splitting, actually define a fixed-point mapping; (2) The optimal solutions of the composite convex program and the solutions of a system of nonlinear equations derived from the fixed-point mapping are equivalent. Solving this kind of system of nonlinear equations enables us to develop second-order type methods. These nonlinear equations may be non-differentiable, but they are often semi-smooth and their generalized Jacobian matrix is positive semidefinite due to monotonicity. By combining with a regularization approach and a known hyperplane projection technique, we propose an adaptive semi-smooth Newton method and establish its convergence to global optimality. Preliminary numerical results on ℓ 1 -minimization problems demonstrate that our second-order type algorithms are able to achieve superlinear or quadratic convergence.
Author Zhang, Liwei
Xiao, Xiantao
Wen, Zaiwen
Li, Yongfeng
Author_xml – sequence: 1
  givenname: Xiantao
  surname: Xiao
  fullname: Xiao, Xiantao
  organization: School of Mathematical Sciences, Dalian University of Technology
– sequence: 2
  givenname: Yongfeng
  surname: Li
  fullname: Li, Yongfeng
  organization: School of Mathematical Sciences, Peking University
– sequence: 3
  givenname: Zaiwen
  orcidid: 0000-0003-1762-0671
  surname: Wen
  fullname: Wen, Zaiwen
  email: wenzw@pku.edu.cn
  organization: Beijing International Center for Mathematical Research, Peking University
– sequence: 4
  givenname: Liwei
  surname: Zhang
  fullname: Zhang, Liwei
  organization: School of Mathematical Sciences, Dalian University of Technology
BookMark eNp9kEtLAzEUhYNUsFZ_gLsB19FkMplMlqX4gvrA6spFSDN32imdSU1Sq_56M4wgCLo6l8v57uMcokFrW0DohJIzSog495RIyjGhApM8zTDbQ0PKBcMil3SAhqQoOBaZyA7QofcrQogsZDpEL-PkERbbtXb1J5TJDJoazxprwzK5g12wbXILYWnLZFfH1oOzKzChju1ZgI1PKuuSiW021tcBYtW-wXvnWjjd-CO0X-m1h-NvHaHny4unyTWe3l_dTMZTbBjNA64ML7iGSmhBgIOmpiKGZJBqJtM0nxMhjYE5K42UOU1lBlGKkmWEap7nmo3QaT934-zrFnxQK7t1bVypUkkLRpngPLpE7zLOeu-gUqYOuvslOF2vFSWqS1L1SaqYpOqSVCyS9Be5cXWj3ce_TNozPnrbBbifm_6GvgC29ofh
CitedBy_id crossref_primary_10_1137_18M1181249
crossref_primary_10_1137_19M1259444
crossref_primary_10_1007_s10915_020_01364_0
crossref_primary_10_1007_s10915_023_02165_x
crossref_primary_10_1016_j_cam_2022_114765
crossref_primary_10_1002_nla_2409
crossref_primary_10_1007_s10915_025_02794_4
crossref_primary_10_1016_j_acha_2019_08_005
crossref_primary_10_1007_s10107_022_01794_8
crossref_primary_10_1007_s11228_022_00651_2
crossref_primary_10_1137_23M1565097
crossref_primary_10_1007_s12190_024_02062_y
crossref_primary_10_1137_24M1628578
crossref_primary_10_1109_TPAMI_2022_3215914
crossref_primary_10_1137_20M1321176
crossref_primary_10_12677_AAM_2022_113119
crossref_primary_10_1137_19M1290097
crossref_primary_10_1007_s10107_021_01629_y
crossref_primary_10_1016_j_apnum_2023_07_004
crossref_primary_10_1007_s10915_019_00929_y
crossref_primary_10_1287_ijoo_2021_0064
crossref_primary_10_1007_s40305_020_00295_9
crossref_primary_10_1007_s43069_024_00307_x
crossref_primary_10_1007_s10107_022_01898_1
crossref_primary_10_1016_j_cnsns_2025_109251
crossref_primary_10_1016_j_jksus_2024_103547
crossref_primary_10_1007_s10107_024_02110_2
crossref_primary_10_1287_moor_2022_1302
crossref_primary_10_1007_s42967_024_00423_9
crossref_primary_10_1007_s10589_023_00525_9
crossref_primary_10_1007_s11425_020_1865_1
crossref_primary_10_1002_nla_2533
crossref_primary_10_1137_18M122457X
crossref_primary_10_1016_j_dsp_2021_103320
crossref_primary_10_1137_21M1398513
crossref_primary_10_1007_s10589_023_00481_4
crossref_primary_10_1016_j_cam_2022_114674
crossref_primary_10_1088_1361_6420_adc0b7
crossref_primary_10_1007_s11081_020_09523_w
crossref_primary_10_1287_ijoo_2019_0032
crossref_primary_10_1007_s10589_023_00451_w
crossref_primary_10_1007_s10589_024_00595_3
crossref_primary_10_1137_20M1335480
crossref_primary_10_1007_s40305_025_00584_1
crossref_primary_10_1080_02331934_2021_1958809
crossref_primary_10_1007_s10915_025_02867_4
crossref_primary_10_1287_moor_2023_0068
crossref_primary_10_1007_s10915_025_02806_3
Cites_doi 10.1137/S1052623499357957
10.1007/978-1-4419-9569-8_10
10.1007/s10107-014-0853-2
10.1007/978-1-4757-6388-1_18
10.1137/090777761
10.1137/080718206
10.1007/BF01581204
10.1007/978-3-319-41589-5_4
10.1137/120892167
10.1007/978-1-4419-9467-7
10.1016/0898-1221(76)90003-1
10.1093/imanum/drq015
10.1287/moor.2016.0827
10.1137/0803021
10.1137/S1052623494274970
10.1137/090747695
10.1007/978-1-4614-4340-7
10.1007/s00607-004-0083-1
10.1287/moor.18.1.227
10.1287/moor.27.1.150.342
10.1090/S0002-9947-1956-0084194-4
10.1088/0266-5611/24/3/035007
10.1006/jmaa.1995.1412
10.1007/BF01581275
10.1090/S0025-5718-08-02121-2
10.1007/BF02190320
10.1007/s11075-012-9653-z
10.1007/s10107-015-0965-3
10.1016/S0377-0427(02)00730-6
10.1561/2200000016
10.1137/130921428
10.1137/0716071
10.1137/080714488
10.1007/s10957-004-1721-7
10.1137/0315061
10.1109/TSP.2009.2016892
10.1007/s10107-007-0170-0
10.1007/978-3-642-02431-3
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2017
Springer Science+Business Media, LLC, part of Springer Nature 2017.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2017
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2017.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-017-0624-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
EndPage 389
ExternalDocumentID 10_1007_s10915_017_0624_3
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11322109
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-fc585aef7a70e5ea1cf0c04e2a39226b079cceb3dc9961294e9618d3401a566a3
IEDL.DBID RSV
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434711800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 04:24:42 EST 2025
Sat Nov 29 01:56:18 EST 2025
Tue Nov 18 22:27:57 EST 2025
Fri Feb 21 02:36:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Semi-smoothness
Operator splitting methods
90C30
65K05
Proximal mapping
Newton method
Composite convex programs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-fc585aef7a70e5ea1cf0c04e2a39226b079cceb3dc9961294e9618d3401a566a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1762-0671
PQID 2918313755
PQPubID 2043771
PageCount 26
ParticipantIDs proquest_journals_2918313755
crossref_citationtrail_10_1007_s10915_017_0624_3
crossref_primary_10_1007_s10915_017_0624_3
springer_journals_10_1007_s10915_017_0624_3
PublicationCentury 2000
PublicationDate 20180700
2018-7-00
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 7
  year: 2018
  text: 20180700
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Glowinski, Marrocco (CR15) 1975; 9
Mifflin (CR21) 1977; 15
Sun, Han (CR34) 1997; 7
Wright, Nowak, Figueiredo (CR40) 2009; 57
Facchinei, Pang (CR12) 2003
Ortega, Rheinboldt (CR24) 1970
De Luca, Facchinei, Kanzow (CR9) 1996; 75
Pang, Qi (CR25) 1993; 3
Sun, Sun (CR35) 2002; 27
Yang, Zhang (CR42) 2011; 33
Byrd, Chin, Nocedal, Oztoprak (CR4) 2016; 159
Wen, Yin, Goldfarb, Zhang (CR39) 2010; 32
Ahookhosh, Amini, Bahrami (CR1) 2013; 64
Zhao, Sun, Toh (CR43) 2010; 20
Solodov, Svaiter, Fukushima, Qi (CR32) 1999
Rockafellar, Wets (CR29) 1998
Tseng, Yun (CR36) 2009; 117
Gabay, Mercier (CR14) 1976; 2
Zhou, Li (CR46) 2008; 77
Combettes, Pesquet, Bauschke, Burachik, Combettes, Elser, Luke, Wolkowicz (CR6) 2011
Bauschke, Combettes (CR2) 2011
Griesse, Lorenz (CR16) 2008; 24
van den Berg, Friedlander (CR38) 2008; 31
Douglas, Rachford (CR10) 1956; 82
Eckstein, Bertsekas (CR11) 1992; 55
Ulbrich (CR37) 2011
Xiu, Zhang (CR41) 2003; 152
Chen, Liu, Sun, Toh (CR5) 2016; 155
Shapiro (CR31) 1994; 81
Qi, Sun (CR28) 1993; 58
CR26
Lee, Sun, Saunders (CR18) 2014; 24
Nocedal, Wright (CR23) 2006
Jiang, Qi (CR17) 1995; 196
Milzarek, Ulbrich (CR22) 2014; 24
Scholtes (CR30) 2012
Zhou, Toh (CR45) 2005; 125
Davis, Yin (CR8) 2017; 42
Qi (CR27) 1993; 18
Lions, Mercier (CR20) 1979; 16
Zhao, Li (CR44) 2001; 11
Davis, Yin, Glowinski, Osher, Yin (CR7) 2016
Li, Li (CR19) 2011; 31
Boyd, Parikh, Chu, Peleato, Eckstein (CR3) 2011; 3
Fan, Yuan (CR13) 2005; 74
Solodov, Svaiter (CR33) 1999; 6
WJ Zhou (624_CR46) 2008; 77
JY Fan (624_CR13) 2005; 74
R Glowinski (624_CR15) 1975; 9
H Jiang (624_CR17) 1995; 196
F Facchinei (624_CR12) 2003
MV Solodov (624_CR33) 1999; 6
S Scholtes (624_CR30) 2012
LQ Qi (624_CR28) 1993; 58
Z Wen (624_CR39) 2010; 32
N Xiu (624_CR41) 2003; 152
E Berg van den (624_CR38) 2008; 31
PL Combettes (624_CR6) 2011
D Gabay (624_CR14) 1976; 2
JD Lee (624_CR18) 2014; 24
A Shapiro (624_CR31) 1994; 81
M Ahookhosh (624_CR1) 2013; 64
RH Byrd (624_CR4) 2016; 159
624_CR26
T Luca De (624_CR9) 1996; 75
MV Solodov (624_CR32) 1999
P Tseng (624_CR36) 2009; 117
J Yang (624_CR42) 2011; 33
R Griesse (624_CR16) 2008; 24
P-L Lions (624_CR20) 1979; 16
M Ulbrich (624_CR37) 2011
C Chen (624_CR5) 2016; 155
Q Li (624_CR19) 2011; 31
Y-B Zhao (624_CR44) 2001; 11
J Eckstein (624_CR11) 1992; 55
JM Ortega (624_CR24) 1970
D Sun (624_CR34) 1997; 7
RT Rockafellar (624_CR29) 1998
SJ Wright (624_CR40) 2009; 57
G Zhou (624_CR45) 2005; 125
S Boyd (624_CR3) 2011; 3
HH Bauschke (624_CR2) 2011
R Mifflin (624_CR21) 1977; 15
A Milzarek (624_CR22) 2014; 24
XY Zhao (624_CR43) 2010; 20
D Davis (624_CR8) 2017; 42
J Douglas (624_CR10) 1956; 82
J Nocedal (624_CR23) 2006
D Sun (624_CR35) 2002; 27
J-S Pang (624_CR25) 1993; 3
D Davis (624_CR7) 2016
LQ Qi (624_CR27) 1993; 18
References_xml – volume: 9
  start-page: 41
  year: 1975
  end-page: 76
  ident: CR15
  article-title: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires
  publication-title: Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér.
– volume: 11
  start-page: 962
  year: 2001
  end-page: 973
  ident: CR44
  article-title: Monotonicity of fixed point and normal mappings associated with variational inequality and its application
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499357957
– start-page: 185
  year: 2011
  end-page: 212
  ident: CR6
  article-title: Proximal splitting methods in signal processing
  publication-title: Fixed-Point Algorithms for Inverse Poblems in Science and Engineering, Volume 49 of Springer Optim. Appl.
  doi: 10.1007/978-1-4419-9569-8_10
– volume: 155
  start-page: 435
  year: 2016
  end-page: 470
  ident: CR5
  article-title: A semismooth Newton-CG based dual PPA for matrix spectral norm approximation problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0853-2
– start-page: 355
  year: 1999
  end-page: 369
  ident: CR32
  article-title: A globally convergent inexact Newton method for systems of monotone equations
  publication-title: Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods (Lausanne, 1997)
  doi: 10.1007/978-1-4757-6388-1_18
– volume: 6
  start-page: 59
  year: 1999
  end-page: 70
  ident: CR33
  article-title: A hybrid projection-proximal point algorithm
  publication-title: J. Convex Anal.
– volume: 33
  start-page: 250
  year: 2011
  end-page: 278
  ident: CR42
  article-title: Alternating direction algorithms for -problems in compressive sensing
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090777761
– volume: 20
  start-page: 1737
  year: 2010
  end-page: 1765
  ident: CR43
  article-title: A Newton-CG augmented Lagrangian method for semidefinite programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/080718206
– volume: 55
  start-page: 293
  year: 1992
  end-page: 318
  ident: CR11
  article-title: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators
  publication-title: Math. Program.
  doi: 10.1007/BF01581204
– start-page: 115
  year: 2016
  end-page: 163
  ident: CR7
  article-title: Convergence rate analysis of several splitting schemes
  publication-title: Splitting Methods in Communication, Imaging, Science, and Engineering, Sci. Comput.
  doi: 10.1007/978-3-319-41589-5_4
– volume: 24
  start-page: 298
  year: 2014
  end-page: 333
  ident: CR22
  article-title: A semismooth Newton method with multidimensional filter globalization for -optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/120892167
– year: 2011
  ident: CR2
  publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  doi: 10.1007/978-1-4419-9467-7
– volume: 2
  start-page: 17
  year: 1976
  end-page: 40
  ident: CR14
  article-title: A dual algorithm for the solution of nonlinear variational problems via finite element approximation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(76)90003-1
– volume: 31
  start-page: 1625
  year: 2011
  end-page: 1635
  ident: CR19
  article-title: A class of derivative-free methods for large-scale nonlinear monotone equations
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drq015
– volume: 42
  start-page: 783
  year: 2017
  end-page: 805
  ident: CR8
  article-title: Faster convergence rates of relaxed Peaceman–Rachford and ADMM under regularity assumptions
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2016.0827
– volume: 3
  start-page: 443
  year: 1993
  end-page: 465
  ident: CR25
  article-title: Nonsmooth equations: motivation and algorithms
  publication-title: SIAM J. Optim.
  doi: 10.1137/0803021
– volume: 7
  start-page: 463
  year: 1997
  end-page: 480
  ident: CR34
  article-title: Newton and quasi-Newton methods for a class of nonsmooth equations and related problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494274970
– volume: 32
  start-page: 1832
  year: 2010
  end-page: 1857
  ident: CR39
  article-title: A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090747695
– year: 2012
  ident: CR30
  publication-title: Introduction to Piecewise Differentiable Equations, Springer Briefs in Optimization
  doi: 10.1007/978-1-4614-4340-7
– volume: 74
  start-page: 23
  year: 2005
  end-page: 39
  ident: CR13
  article-title: On the quadratic convergence of the Levenberg–Marquardt method without nonsingularity assumption
  publication-title: Computing
  doi: 10.1007/s00607-004-0083-1
– volume: 18
  start-page: 227
  year: 1993
  end-page: 244
  ident: CR27
  article-title: Convergence analysis of some algorithms for solving nonsmooth equations
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.18.1.227
– volume: 27
  start-page: 150
  year: 2002
  end-page: 169
  ident: CR35
  article-title: Semismooth matrix-valued functions
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.27.1.150.342
– year: 2006
  ident: CR23
  publication-title: Numerical Optimization, Springer Series in Operations Research and Financial Engineering
– volume: 82
  start-page: 421
  year: 1956
  end-page: 439
  ident: CR10
  article-title: On the numerical solution of heat conduction problems in two and three space variables
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1956-0084194-4
– volume: 24
  start-page: 035007
  year: 2008
  ident: CR16
  article-title: A semismooth Newton method for Tikhonov functionals with sparsity constraints
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/24/3/035007
– volume: 196
  start-page: 314
  year: 1995
  end-page: 331
  ident: CR17
  article-title: Local uniqueness and convergence of iterative methods for nonsmooth variational inequalities
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1995.1412
– volume: 58
  start-page: 353
  year: 1993
  end-page: 367
  ident: CR28
  article-title: A nonsmooth version of Newton’s method
  publication-title: Math. Program.
  doi: 10.1007/BF01581275
– volume: 77
  start-page: 2231
  year: 2008
  end-page: 2240
  ident: CR46
  article-title: A globally convergent BFGS method for nonlinear monotone equations without any merit functions
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-08-02121-2
– volume: 81
  start-page: 203
  year: 1994
  end-page: 204
  ident: CR31
  article-title: Directionally nondifferentiable metric projection
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF02190320
– volume: 64
  start-page: 21
  year: 2013
  end-page: 42
  ident: CR1
  article-title: Two derivative-free projection approaches for systems of large-scale nonlinear monotone equations
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-012-9653-z
– volume: 159
  start-page: 435
  year: 2016
  end-page: 467
  ident: CR4
  article-title: A family of second-order methods for convex -regularized optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0965-3
– volume: 152
  start-page: 559
  year: 2003
  end-page: 585
  ident: CR41
  article-title: Some recent advances in projection-type methods for variational inequalities
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00730-6
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: CR3
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 24
  start-page: 1420
  year: 2014
  end-page: 1443
  ident: CR18
  article-title: Proximal Newton-type methods for minimizing composite functions
  publication-title: SIAM J. Optim.
  doi: 10.1137/130921428
– volume: 16
  start-page: 964
  year: 1979
  end-page: 979
  ident: CR20
  article-title: Splitting algorithms for the sum of two nonlinear operators
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– year: 2011
  ident: CR37
  publication-title: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function spaces, Society for Industrial and Applied Mathematics SIAM), Philadelphia, PA
– volume: 31
  start-page: 890
  year: 2008
  end-page: 912
  ident: CR38
  article-title: Probing the Pareto frontier for basis pursuit solutions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/080714488
– volume: 125
  start-page: 205
  year: 2005
  end-page: 221
  ident: CR45
  article-title: Superlinear convergence of a Newton-type algorithm for monotone equations
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-004-1721-7
– volume: 15
  start-page: 959
  year: 1977
  end-page: 972
  ident: CR21
  article-title: Semismooth and semiconvex functions in constrained optimization
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0315061
– volume: 57
  start-page: 2479
  year: 2009
  end-page: 2493
  ident: CR40
  article-title: Sparse reconstruction by separable approximation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2016892
– volume: 75
  start-page: 407
  year: 1996
  end-page: 439
  ident: CR9
  article-title: A semismooth equation approach to the solution of nonlinear complementarity problems
  publication-title: Math. Program.
– year: 2003
  ident: CR12
  publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
– volume: 117
  start-page: 387
  year: 2009
  end-page: 423
  ident: CR36
  article-title: A coordinate gradient descent method for nonsmooth separable minimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0170-0
– ident: CR26
– year: 1970
  ident: CR24
  publication-title: Iterative Solution of Nonlinear Equations in Several Variables
– year: 1998
  ident: CR29
  publication-title: Variational Analysis
  doi: 10.1007/978-3-642-02431-3
– volume-title: Numerical Optimization, Springer Series in Operations Research and Financial Engineering
  year: 2006
  ident: 624_CR23
– volume-title: Introduction to Piecewise Differentiable Equations, Springer Briefs in Optimization
  year: 2012
  ident: 624_CR30
  doi: 10.1007/978-1-4614-4340-7
– volume: 31
  start-page: 890
  year: 2008
  ident: 624_CR38
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/080714488
– volume: 6
  start-page: 59
  year: 1999
  ident: 624_CR33
  publication-title: J. Convex Anal.
– start-page: 185
  volume-title: Fixed-Point Algorithms for Inverse Poblems in Science and Engineering, Volume 49 of Springer Optim. Appl.
  year: 2011
  ident: 624_CR6
  doi: 10.1007/978-1-4419-9569-8_10
– volume: 3
  start-page: 1
  year: 2011
  ident: 624_CR3
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 32
  start-page: 1832
  year: 2010
  ident: 624_CR39
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090747695
– volume: 125
  start-page: 205
  year: 2005
  ident: 624_CR45
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-004-1721-7
– volume: 2
  start-page: 17
  year: 1976
  ident: 624_CR14
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(76)90003-1
– ident: 624_CR26
– volume: 9
  start-page: 41
  year: 1975
  ident: 624_CR15
  publication-title: Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér.
– volume: 196
  start-page: 314
  year: 1995
  ident: 624_CR17
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1995.1412
– volume: 11
  start-page: 962
  year: 2001
  ident: 624_CR44
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499357957
– volume-title: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function spaces, Society for Industrial and Applied Mathematics SIAM), Philadelphia, PA
  year: 2011
  ident: 624_CR37
– volume: 16
  start-page: 964
  year: 1979
  ident: 624_CR20
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– volume: 81
  start-page: 203
  year: 1994
  ident: 624_CR31
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF02190320
– volume: 75
  start-page: 407
  year: 1996
  ident: 624_CR9
  publication-title: Math. Program.
– volume: 77
  start-page: 2231
  year: 2008
  ident: 624_CR46
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-08-02121-2
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2011
  ident: 624_CR2
  doi: 10.1007/978-1-4419-9467-7
– volume: 57
  start-page: 2479
  year: 2009
  ident: 624_CR40
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2016892
– volume: 74
  start-page: 23
  year: 2005
  ident: 624_CR13
  publication-title: Computing
  doi: 10.1007/s00607-004-0083-1
– volume: 159
  start-page: 435
  year: 2016
  ident: 624_CR4
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0965-3
– volume: 20
  start-page: 1737
  year: 2010
  ident: 624_CR43
  publication-title: SIAM J. Optim.
  doi: 10.1137/080718206
– volume: 58
  start-page: 353
  year: 1993
  ident: 624_CR28
  publication-title: Math. Program.
  doi: 10.1007/BF01581275
– volume: 27
  start-page: 150
  year: 2002
  ident: 624_CR35
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.27.1.150.342
– volume: 117
  start-page: 387
  year: 2009
  ident: 624_CR36
  publication-title: Math. Program.
  doi: 10.1007/s10107-007-0170-0
– volume: 24
  start-page: 1420
  year: 2014
  ident: 624_CR18
  publication-title: SIAM J. Optim.
  doi: 10.1137/130921428
– volume: 42
  start-page: 783
  year: 2017
  ident: 624_CR8
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2016.0827
– volume: 55
  start-page: 293
  year: 1992
  ident: 624_CR11
  publication-title: Math. Program.
  doi: 10.1007/BF01581204
– volume: 18
  start-page: 227
  year: 1993
  ident: 624_CR27
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.18.1.227
– volume: 152
  start-page: 559
  year: 2003
  ident: 624_CR41
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00730-6
– volume: 64
  start-page: 21
  year: 2013
  ident: 624_CR1
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-012-9653-z
– volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
  year: 2003
  ident: 624_CR12
– volume: 155
  start-page: 435
  year: 2016
  ident: 624_CR5
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0853-2
– volume-title: Iterative Solution of Nonlinear Equations in Several Variables
  year: 1970
  ident: 624_CR24
– volume: 24
  start-page: 298
  year: 2014
  ident: 624_CR22
  publication-title: SIAM J. Optim.
  doi: 10.1137/120892167
– volume-title: Variational Analysis
  year: 1998
  ident: 624_CR29
  doi: 10.1007/978-3-642-02431-3
– volume: 15
  start-page: 959
  year: 1977
  ident: 624_CR21
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0315061
– volume: 33
  start-page: 250
  year: 2011
  ident: 624_CR42
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090777761
– start-page: 115
  volume-title: Splitting Methods in Communication, Imaging, Science, and Engineering, Sci. Comput.
  year: 2016
  ident: 624_CR7
  doi: 10.1007/978-3-319-41589-5_4
– volume: 82
  start-page: 421
  year: 1956
  ident: 624_CR10
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1956-0084194-4
– volume: 24
  start-page: 035007
  year: 2008
  ident: 624_CR16
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/24/3/035007
– volume: 31
  start-page: 1625
  year: 2011
  ident: 624_CR19
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drq015
– start-page: 355
  volume-title: Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods (Lausanne, 1997)
  year: 1999
  ident: 624_CR32
– volume: 7
  start-page: 463
  year: 1997
  ident: 624_CR34
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494274970
– volume: 3
  start-page: 443
  year: 1993
  ident: 624_CR25
  publication-title: SIAM J. Optim.
  doi: 10.1137/0803021
SSID ssj0009892
Score 2.4683065
Snippet The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 364
SubjectTerms Algorithms
Computational Mathematics and Numerical Analysis
Convergence
Convex analysis
Hyperplanes
Jacobi matrix method
Jacobian matrix
Machine learning
Mapping
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Newton methods
Nonlinear equations
Optimization
Partial differential equations
Regularization
Splitting
Theoretical
SummonAdditionalLinks – databaseName: ProQuest advanced technologies & aerospace journals
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA5uBy_quODoKDl4cCHYNsk0OYmI4kUZXED0UNI0hQFncTqK-Ot9r00tCnrxVmgaSr_k5XtL30fIXqRVIEyaMuwvxYSINVOpFCw0wlkedk2mK7GJ-PpaPTzong-4Fb6ssraJpaHORhZj5MeRhsUX8ljKk_ELQ9UozK56CY1ZMo9dElC6oScfm6a7qhRFho0kGdBmUWc1q1_ndIhla1j8FQnGv59LDdn8kR8tj52L5f--8ApZ8oSTnlYrpEVm3HCVtPyWLui-7zt9sEaeTulNqUw_6X-4jN66QZ_dDkYAJQVTCByRXpVy0xRjt7RXhXAAVoqVYgUF9kvRumAVmIOr4Zt7x1FY_lWsk_uL87uzS-a1FxgiNGW5BT_CuDw2ceCkM6HNAxsIFxkgVFE3DWJtLTjimQWHCTiDcCgdk3Fw1wwwRMM3yNxwNHSbhHLJnc11V0pjhNJCWeOARKgMnKU0dqpNgvrLJ9Y3Jkd9jOekaamMYCUAVoJgJbxNDr8eGVddOf4a3KkBSvwGLZIGnTY5qiFubv862dbfk22TRWBUqqrn7ZC56eTV7ZAF-zbtF5PdcnV-Aku06OQ
  priority: 102
  providerName: ProQuest
Title A Regularized Semi-Smooth Newton Method with Projection Steps for Composite Convex Programs
URI https://link.springer.com/article/10.1007/s10915-017-0624-3
https://www.proquest.com/docview/2918313755
Volume 76
WOSCitedRecordID wos000434711800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCDWh9YrSUHDz4I7CPpJscqiiAtpVURPSzZbAoF20q3FvHXO9lHq6KCXpaFzS7LTDL5JvkyH8ChJ4XDVBRRW1-KMhZIKiLOqKuY0b5bV7HMxCaCVkvc38t2fo47KdjuxZZkGqk_HHaTriWaWbqWx6i_CEs42wmr19Dp3s0r7YpUCRlHD6eIlVmxlfndJz5PRnOE-WVTNJ1rLtf_9ZcbsJZDS9LI-kIZFsxwE1abs7qsySaU86GckKO83vTxFjw2SCdVpB_330xMumbQp93BCF1IMAQiNiTNVGaa2DVb0s6WbtCdxDLEEoKol9ioYtlfBu-GU_NqW1naV7INt5cXN-dXNNdcoNYzE9rTmD8o0wtU4BhulKt7jnaY8RQCKa8eOYHUGhPwWGOihFiBGSsZE_uYpilEhsrfgdJwNDS7QHzuG92Tdc6VYkIyoZVB8CBiTJKiwIgKOIXxQ50XJLe6GE_hvJSyNWaIxgytMUO_AiezV56zahy_Na4WHg3zgZmEnsQY5voB5xU4LTw4f_zjx_b-1HofVhBYiYzWW4XSZPxiDmBZTyf9ZFyDpbOLVrtTg8XrgOK1zR9qaR9-B9hs5hs
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXoEDFQgEfisRDVpPYWdsHVFVA1WrbVUWLVIlD6jiz1UrtbmmW8vhR_MbO5EFEpfbWQ2-R4jhK_M34G_vzDMBy4mykfZ5Lzi8ltTZO2jzVMvYag4r7vnB1sQkzHNr9fbczB3_bszAsq2x9YuWoi2ngNfKVxBH4YmXSdPXku-SqUby72pbQqGExwN8_KWQrP2x-ovF9nSTrn_c-bsimqoDkd8_kKBBD9jgy3kSYoo_DKAqRxsQTVUj6eWRcCBRiFoFCAZoNNXJRlEJRIOKJ-3hF_d6C21pZw3Y1MLJL8murIsxkuKkkmq7bXdT6qJ6LWSbHYrNES_X_PNiR2wv7sdU0t_7gpv2gh3C_IdRirbaABZjDySNYaFxWKd40ebXfPoZva-ILHrLsdvwHC7GLx2O5ezwlqApy9cSBxXZVTlvw2rTYqZeoCLaClXClIHYv2Huyyg3panKGv7gVy9vKJ_D1Wj5yEeYn0wk-BaFShWHk-mnqvbZO2-CRSJItKBjMDdoeRO1IZ6FJvM71P46yLmU0gyMjcGQMjkz14N2_R07qrCNXNV5qAZE1DqjMOjT04H0Lqe72pZ09u7qzV3B3Y297K9vaHA6ewz1ij7bWLi_B_Oz0B76AO-FsNi5PX1aWIeDgupF2DuvqRb0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxtBFD7UKKIP9VqMRp0HH1plcC-z2ZnHUA2KGoKpRejDMjs7C4G6CdkYir--5-zF2GIL4tvCzg7LnLl8Z-ab7wM48pR0hI5jTvpSXIhQcRkHgrtaWOO7bZ2o0mwi7PXk_b3qVz6nec12r48kyzsNpNKUTU_HSXr64uKbcol0RtQtT3B_ARYF8egpXR98n6vuysIVGUdSwBE3i_pY87Uq_lyY5mjzrwPSYt3prr37j9fhYwU5WafsIxvwwWabsHrzrNeab8JGNcRz9rnSof6yBT867LZwqp8Mn2zCBvZhyAcPIwwtw6kRMSO7KeynGe3lsn65pYNhZsQcyxmiYUazDbHCLD5lM_uLShEdLN-Gu-75t68XvPJi4BSxKU8N5hXapqEOHRtY7ZrUMY6wnkaA5bVjJ1TGYGKeGEygEEMIS1YyiY_pm0bEqP1P0MhGmd0B5ge-NalqB4HWQiohjbYIKmSCyVMcWtkEpw5EZCqhcvLL-BnNJZapMSNszIgaM_KbcPz8ybhU6fhf4VYd3agasHnkKZzbXD8Mgiac1NGcv_5nZbtvKn0Iy_2zbnR92bvagxXEXrJk_ragMZ082n1YMrPpMJ8cFN34N7287nk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Regularized+Semi-Smooth+Newton+Method+with+Projection+Steps+for+Composite+Convex+Programs&rft.jtitle=Journal+of+scientific+computing&rft.au=Xiao%2C+Xiantao&rft.au=Li%2C+Yongfeng&rft.au=Wen%2C+Zaiwen&rft.au=Zhang%2C+Liwei&rft.date=2018-07-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=76&rft.issue=1&rft.spage=364&rft.epage=389&rft_id=info:doi/10.1007%2Fs10915-017-0624-3&rft.externalDocID=10_1007_s10915_017_0624_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon