Binary extended formulations of polyhedral mixed-integer sets

We analyze different ways of constructing binary extended formulations of polyhedral mixed-integer sets with bounded integer variables and compare their relative strength with respect to split cuts. We show that among all binary extended formulations where each bounded integer variable is represente...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 170; H. 1; S. 207 - 236
Hauptverfasser: Dash, Sanjeeb, Günlük, Oktay, Hildebrand, Robert
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2018
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze different ways of constructing binary extended formulations of polyhedral mixed-integer sets with bounded integer variables and compare their relative strength with respect to split cuts. We show that among all binary extended formulations where each bounded integer variable is represented by a distinct collection of binary variables, what we call “unimodular” extended formulations are the strongest. We also compare the strength of some binary extended formulations from the literature. Finally, we study the behavior of branch-and-bound on such extended formulations and show that branching on the new binary variables leads to significantly smaller enumeration trees in some cases.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-018-1294-0