Binary extended formulations of polyhedral mixed-integer sets

We analyze different ways of constructing binary extended formulations of polyhedral mixed-integer sets with bounded integer variables and compare their relative strength with respect to split cuts. We show that among all binary extended formulations where each bounded integer variable is represente...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 170; číslo 1; s. 207 - 236
Hlavní autoři: Dash, Sanjeeb, Günlük, Oktay, Hildebrand, Robert
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2018
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We analyze different ways of constructing binary extended formulations of polyhedral mixed-integer sets with bounded integer variables and compare their relative strength with respect to split cuts. We show that among all binary extended formulations where each bounded integer variable is represented by a distinct collection of binary variables, what we call “unimodular” extended formulations are the strongest. We also compare the strength of some binary extended formulations from the literature. Finally, we study the behavior of branch-and-bound on such extended formulations and show that branching on the new binary variables leads to significantly smaller enumeration trees in some cases.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-018-1294-0