Affine Variational Inequalities on Normed Spaces

This paper studies infinite-dimensional affine variational inequalities on normed spaces. It is shown that infinite-dimensional quadratic programming problems and infinite-dimensional linear fractional vector optimization problems can be studied by using affine variational inequalities. We present t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of optimization theory and applications Ročník 178; číslo 1; s. 36 - 55
Hlavní autori: Yen, Nguyen Dong, Yang, Xiaoqi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.07.2018
Springer Nature B.V
Predmet:
ISSN:0022-3239, 1573-2878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper studies infinite-dimensional affine variational inequalities on normed spaces. It is shown that infinite-dimensional quadratic programming problems and infinite-dimensional linear fractional vector optimization problems can be studied by using affine variational inequalities. We present two basic facts about infinite-dimensional affine variational inequalities: the Lagrange multiplier rule and the solution set decomposition.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-018-1296-3