Affine Variational Inequalities on Normed Spaces

This paper studies infinite-dimensional affine variational inequalities on normed spaces. It is shown that infinite-dimensional quadratic programming problems and infinite-dimensional linear fractional vector optimization problems can be studied by using affine variational inequalities. We present t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 178; H. 1; S. 36 - 55
Hauptverfasser: Yen, Nguyen Dong, Yang, Xiaoqi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2018
Springer Nature B.V
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies infinite-dimensional affine variational inequalities on normed spaces. It is shown that infinite-dimensional quadratic programming problems and infinite-dimensional linear fractional vector optimization problems can be studied by using affine variational inequalities. We present two basic facts about infinite-dimensional affine variational inequalities: the Lagrange multiplier rule and the solution set decomposition.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-018-1296-3